1
|
Armas-Pérez JC, Hernández-Ortiz JP, de Pablo JJ. Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach. J Chem Phys 2015; 143:243157. [DOI: 10.1063/1.4937628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julio C. Armas-Pérez
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Juan P. Hernández-Ortiz
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
2
|
Armas-Pérez JC, Londono-Hurtado A, Guzmán O, Hernández-Ortiz JP, de Pablo JJ. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields. J Chem Phys 2015; 143:044107. [DOI: 10.1063/1.4926790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Julio C. Armas-Pérez
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | | | - Orlando Guzmán
- Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, DF 09340, México
| | - Juan P. Hernández-Ortiz
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
3
|
Londoño-Hurtado A, Armas-Pérez JC, Hernández-Ortiz JP, de Pablo JJ. Homeotropic nano-particle assembly on degenerate planar nematic interfaces: films and droplets. SOFT MATTER 2015; 11:5067-5076. [PMID: 26027806 DOI: 10.1039/c5sm00940e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A continuum theory is used to study the effects of homeotropic nano-particles on degenerate planar liquid crystal interfaces. Particle self-assembly mechanisms are obtained from careful examination of particle configurations on a planar film and on a spherical droplet. The free energy functional that describes the system is minimized according to Ginzburg-Landau and stochastic relaxations. The interplay between elastic and surface distortions and the desire to minimize defect volumes (boojums and half-Saturn rings) is shown to be responsible for the formation of intriguing ordered structures. As a general trend, the particles prefer to localize at defects to minimize the overall free energy. However, multiple metastable configurations corresponding to local minima can be easily observed due to the high energy barriers that separate distinct particle arrangements. We also show that by controlling anchoring strength and temperature one can direct liquid-crystal mediated nanoparticle self-assembly along well defined pathways.
Collapse
|
4
|
Whitmer JK, Joshi AA, Roberts TF, de Pablo JJ. Liquid-crystal mediated nanoparticle interactions and gel formation. J Chem Phys 2013; 138:194903. [PMID: 23697437 DOI: 10.1063/1.4802774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Colloidal particles embedded within nematic liquid crystals exhibit strong anisotropic interactions arising from preferential orientation of nematogens near the particle surface. Such interactions are conducive to forming branched, gel-like aggregates. Anchoring effects also induce interactions between colloids dispersed in the isotropic liquid phase, through the interactions of the pre-nematic wetting layers. Here we utilize computer simulation using coarse-grained mesogens to perform a molecular-level calculation of the potential of mean force between two embedded nanoparticles as a function of anchoring for a set of solvent conditions straddling the isotropic-nematic transition. We observe that strong, nontrivial interactions can be induced between particles dispersed in mesogenic solvent, and explore how such interactions might be utilized to induce a gel state in the isotropic and nematic phases.
Collapse
Affiliation(s)
- Jonathan K Whitmer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691, USA
| | | | | | | |
Collapse
|
5
|
Tomar V, Roberts TF, Abbott NL, Hernández-Ortiz JP, de Pablo JJ. Liquid crystal mediated interactions between nanoparticles in a nematic phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6124-6131. [PMID: 22409589 DOI: 10.1021/la204119p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A continuum theory is used to study the interactions between nanoparticles suspended in nematic liquid crystals. The free energy functional that describes the system is minimized using an Euler-Lagrange approach and an unsymmetric radial basis function method. It is shown that nanoparticle liquid-crystal mediated interactions can be controlled over a large range of magnitudes through changes of the anchoring energy and the particle diameter. The results presented in this work serve to reconcile past discrepancies between theoretical predictions and experimental observations, and suggest intriguing possibilities for directed nanoparticle self-assembly in liquid crystalline media.
Collapse
Affiliation(s)
- V Tomar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
6
|
Hernández-Ortiz JP, Gettelfinger BT, Moreno-Razo J, de Pablo JJ. Modeling flows of confined nematic liquid crystals. J Chem Phys 2011; 134:134905. [DOI: 10.1063/1.3567098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
7
|
Koenig GM, Ong R, Cortes AD, Moreno-Razo JA, de Pablo JJ, Abbott NL. Single nanoparticle tracking reveals influence of chemical functionality of nanoparticles on local ordering of liquid crystals and nanoparticle diffusion coefficients. NANO LETTERS 2009; 9:2794-801. [PMID: 19459705 DOI: 10.1021/nl901498d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This letter reports that darkfield microscopy can be used to track the trajectories of chemically functionalized gold nanoparticles in nematic liquid crystals (LCs), thus leading to measurements of the diffusion coefficients of the nanoparticles in the LCs. These measurements reveal that the diffusion coefficients of the nanoparticles dispersed in the LC are strongly dependent on the surface chemistry of the nanoparticles. Because the changes in surface chemistry are measured to have negligible influence on the diffusion coefficients of the same nanoparticles dispersed in isotropic solvents, we conclude that surface chemistry-induced changes in the local order of LCs underlie the behavior of the diffusion coefficients of the nanoparticles in the LC. Surface chemistry-dependent ordering of the LCs near the surfaces of the nanoparticles was also found to influence diffusion coefficients measured when the LC was heated above the bulk nematic-to-isotropic transition temperature. These experimental measurements are placed into the context of past theoretical predictions regarding the impact of local ordering of LCs on diffusion coefficients. The results that emerge from this study provide important insights into the mobility of nanoparticles in LCs and suggest new approaches based on measurements of nanoparticle dynamics that can yield information on the ordering of LCs near nanoparticles.
Collapse
Affiliation(s)
- Gary M Koenig
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hung FR. Quadrupolar particles in a nematic liquid crystal: effects of particle size and shape. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:021705. [PMID: 19391763 DOI: 10.1103/physreve.79.021705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 12/16/2008] [Indexed: 05/27/2023]
Abstract
We investigate the effects of particle size and shape on the quadrupolar (Saturn-ring-like) defect structures formed by a nematic liquid crystal around nm-sized and mum -sized particles with spherical and spherocylindrical shapes. We also report results for the potentials of mean force in our systems, calculated using a mesoscale theory for the tensor order parameter Q of the nematic. Our results indicate that for pairs of nm-sized particles in close proximity, the nematic forms "entangled hyperbolic" defect structures regardless of the shape of the nanoparticles. In our calculations with nanoparticles we did not observe any other entangled or unentangled defect structures, in contrast to what was reported for pairs of mum -sized spherical particles. Such a finding suggests that the "entangled hyperbolic" defect structures are the most stable for pairs of nanoparticles in close proximity. For pairs of mum -sized particles, our results indicate that the nematic forms entangled "figure-of-eight" defect structures around pairs of spheres and spherocylinders. Our results suggest that the transition between "entangled hyperbolic" and figure-of-eight defect structures takes place when the diameter of the particle is between D=100 nm and 1 microm . We have also calculated the torques that develop when pairs of spherocylindrical nanoparticles in a nematic approach each other. Our calculations suggest that the nematic-mediated interactions between the nm-sized particles are fairly strong, up to 5700 k{B}T for the case of pairs of spherocylindrical nanoparticles arranged with their long axis parallel to each other. Furthermore, these interactions can make the particles to bind together at specific locations, and thus could be used to assemble the particles into ordered structures with different morphologies.
Collapse
Affiliation(s)
- Francisco R Hung
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
9
|
Hung FR, Gettelfinger BT, Koenig GM, Abbott NL, de Pablo JJ. Nanoparticles in nematic liquid crystals: Interactions with nanochannels. J Chem Phys 2007; 127:124702. [PMID: 17902926 DOI: 10.1063/1.2770724] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A mesoscale theory for the tensor order parameter Q is used to investigate the structures that arise when spherical nanoparticles are suspended in confined nematic liquid crystals (NLCs). The NLC is "sandwiched" between a wall and a small channel. The potential of mean force is determined between particles and the bottom of the channels or between several particles. Our results suggest that strong NLC-mediated interactions between the particles and the sidewalls of the channels, on the order of hundreds of k(B)T, arise when the colloids are inside the channels. The magnitude of the channel-particle interactions is dictated by a combination of two factors, namely, the type of defect structures that develop when a nanoparticle is inside a channel, and the degree of ordering of the nematic in the region between the colloid and the nanochannel. The channel-particle interactions become stronger as the nanoparticle diameter becomes commensurate with the nanochannel width. Nanochannel geometry also affects the channel-particle interactions. Among the different geometries considered, a cylindrical channel seems to provide the strongest interactions. Our calculations suggest that small variations in geometry, such as removing the sharp edges of the channels, can lead to important reductions in channel-particle interactions. Our calculations for systems of several nanoparticles indicate that linear arrays of colloids with Saturn ring defects, which for some physical conditions are not stable in a bulk system, can be stabilized inside the nanochannels. These results suggest that nanochannels and NLCs could be used to direct the assembly of nanoparticles into ordered arrays with unusual morphologies.
Collapse
Affiliation(s)
- Francisco R Hung
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, USA
| | | | | | | | | |
Collapse
|
10
|
Tasinkevych M, Andrienko D. Effective triplet interactions in nematic colloids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2006; 21:277-82. [PMID: 17205211 DOI: 10.1140/epje/i2006-10065-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/11/2006] [Indexed: 05/13/2023]
Abstract
Three-body effective interactions emerging between parallel cylindrical rods immersed in a nematic liquid crystals are calculated within the Landau-de Gennes free-energy description. Collinear, equilateral and midplane configurations of the three colloidal particles are considered. In the last two cases the effective triplet interaction is of the same magnitude and range as the pair one.
Collapse
Affiliation(s)
- M Tasinkevych
- Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, 70569, Stuttgart, Germany.
| | | |
Collapse
|
11
|
Araki T, Tanaka H. Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. PHYSICAL REVIEW LETTERS 2006; 97:127801. [PMID: 17025998 DOI: 10.1103/physrevlett.97.127801] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Indexed: 05/12/2023]
Abstract
We numerically study many-body interactions among colloidal particles suspended in a nematic liquid crystal, using a fluid particle dynamics method, which properly incorporates dynamical coupling among particles, nematic orientation, and flow field. Based on simulation results, we propose a new type of interparticle interaction in addition to well-known quadrupolar interaction for particles accompanying Saturn-ring defects. This interaction is mediated by the defect of the nematic phase: upon nematic ordering, a closed disclination loop binds more than two particles to form a sheetlike dynamically arrested structure. The interaction depends upon the topology of a disclination loop binding particles, which is determined by aggregation history.
Collapse
Affiliation(s)
- Takeaki Araki
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | | |
Collapse
|
12
|
Hung FR, Guzmán O, Gettelfinger BT, Abbott NL, de Pablo JJ. Anisotropic nanoparticles immersed in a nematic liquid crystal: defect structures and potentials of mean force. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:011711. [PMID: 16907115 DOI: 10.1103/physreve.74.011711] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/26/2006] [Indexed: 05/11/2023]
Abstract
We report results for the potential of mean force (PMF) and the defect structures that arise when spherocylindrical nanoparticles are immersed in a nematic liquid crystal. Using a dynamic field theory for the tensor order parameter Q of the liquid crystal, we analyzed configurations, including one, two, and three elongated particles, with strong homeotropic anchoring at their surfaces. For systems with one nanoparticle, the most stable configuration is achieved when the spherocylinder is placed with its long axis perpendicular to the far-field director, for which the defect structure consists of an elongated Saturn ring. For systems with two or three nanoparticles with their long axes placed perpendicular to the far-field director, at small separations the defect structures consist of incomplete Saturn rings fused with new disclination rings orthogonal to the original ones, in analogy to results previously observed for spherical nanoparticles. The shape of these orthogonal rings depends on the nanoparticles' configuration, i.e., triangular, linear, or parallel with respect to their long axis. A comparison of the PMFs indicates that the latter configuration is the most stable. The stability of the different arrays depends on whether orthogonal disclination rings form or not, their size, and the curvature effects in the interparticle regions. Our results suggest that the one-elastic-constant approximation is valid for the considered systems; similar results were obtained when a three-constant expression is used to represent the elastic free energy. The attractive interactions between the elongated particles were compared to those observed for spheres of similar diameters. Similar interparticle energies were observed for linear arrays; in contrast, parallel and triangular arrays of spherocylinders yielded interactions that were up to 3.4 times stronger than those observed for spherical particles.
Collapse
Affiliation(s)
- Francisco R Hung
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, USA
| | | | | | | | | |
Collapse
|