1
|
Alvarez-Fernandez A, Reid B, Suthar J, Choy SY, Jara Fornerod M, Mac Fhionnlaoich N, Yang L, Schmidt-Hansberg B, Guldin S. Fractionation of block copolymers for pore size control and reduced dispersity in mesoporous inorganic thin films. NANOSCALE 2020; 12:18455-18462. [PMID: 32941587 DOI: 10.1039/d0nr05132b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mesoporous inorganic thin films are promising materials architectures for a variety of applications, including sensing, catalysis, protective coatings, energy generation and storage. In many cases, precise control over a bicontinuous porous network on the 10 nm length scale is crucial for their operation. A particularly promising route for structure formation utilizes block copolymer (BCP) micelles in solution as sacrificial structure-directing agents for the co-assembly of inorganic precursors. This method offers pore size control via the molecular weight of the pore forming block and is compatible with a broad materials library. On the other hand, the molecular weight dependence impedes continuous pore tuning and the intrinsic polymer dispersity presents challenges to the pore size homogeneity. To this end, we demonstrate how chromatographic fractionation of BCPs provides a powerful method to control the pore size and dispersity of the resulting mesoporous thin films. We apply a semi-preparative size exclusion chromatographic fractionation to a polydisperse poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO) BCP obtained from scaled-up synthesis. The isolation of BCP fractions with distinct molecular weight and narrowed dispersity allowed us to not only tune the characteristic pore size from 9.1 ± 1.5 to 14.1 ± 2.1 nm with the identical BCP source material, but also significantly reduce the pore size dispersity compared to the non-fractionated BCP. Our findings offer a route to obtain a library of monodisperse BCPs from a polydisperse feedstock and provide important insights on the direct relationship between macromolecular characteristics and the resulting structure-directed mesopores, in particular related to dispersity.
Collapse
Affiliation(s)
- Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Barry Reid
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Jugal Suthar
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. and UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Swan Yia Choy
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Maximiliano Jara Fornerod
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Niamh Mac Fhionnlaoich
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Lixu Yang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Benjamin Schmidt-Hansberg
- BASF SE, Process Research & Chemical Engineering, Coating & Film Processing, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
2
|
Gurmessa B, Croll AB. Influence of Thin Film Confinement on Surface Plasticity in Polystyrene and Poly(2-vinylpyridine) Homopolymer and Block Copolymer Films. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bekele Gurmessa
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Andrew B. Croll
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
3
|
Nagaki A, Miyazaki A, Yoshida JI. Synthesis of Polystyrenes−Poly(alkyl methacrylates) Block Copolymers via Anionic Polymerization Using an Integrated Flow Microreactor System. Macromolecules 2010. [DOI: 10.1021/ma101663x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Atsuo Miyazaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|