Karim MR, Alam MM, Aijaz MO, Asiri AM, Dar MA, Rahman MM. Fabrication of 1,4-dioxane sensor based on microwave assisted PAni-SiO
2 nanocomposites.
Talanta 2018;
193:64-69. [PMID:
30368299 DOI:
10.1016/j.talanta.2018.09.100]
[Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/15/2022]
Abstract
In this study, conducting polyaniline (PAni) and silicon dioxide (SiO2) nanocomposites (NCs) were synthesized for chemical sensing applications by microwave assisted reaction technique. Facile synthesis and characterization of the PAni-SiO2 nanocomposites were investigated in details and discussed in this report. For the potential application, 1,4-dioxane chemical sensor was fabricated with the PAni-SiO2 nanocomposites deposited onto glassy carbon electrode (GCE). A very thin uniform film was deposited onto GCE with nanocomposite by using conducting 5% nafion binder at room conditions. To evaluate the sensor analytical performances, a calibration plot such as current versus concentration of 1,4-dioxane was drawn and calculated the analytical parameters from the slope of calibration curve. Results are found as sensitivity (0.5934 µAµmol-1 L-2 cm-2), detection limit (16.0 ± 0.8 pmol L-1), and quantification limit (LOQ; 53.3 ± 1.5 pmol L-1) in this observation. Considering the linear region in calibration plot, the linear dynamic range of 1,4-dioxane chemical sensor was found (0.12 nmol L-1 ∼ 1.2 mmol L-1). Besides this, the proposed 1,4-dioxane chemical sensor was exhibited good reproducibility, long-term stability, high accuracy in detecting of 1,4-dioxane in real environmental samples. This research is to develop of a selective and an efficient electrochemical sensor. It might be a simple and easy way by applying electrochemical method to ensure the safe and sustainable green environment.
Collapse