1
|
Liang X, Shiomi K, Nakajima K. Study of the Dynamic Viscoelasticity of Single Poly( N-isopropylacrylamide) Chains Using Atomic Force Microscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaobin Liang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo152-8552, Japan
| | - Kohei Shiomi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo152-8552, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo152-8552, Japan
| |
Collapse
|
2
|
Zhang X, Li D, Song Y, Zhang W. Single-molecule study on the force-induced melting in syndiotactic polypropylene single crystals. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Ahlawat V, Deopa SPS, Patil S. Quantitative Elasticity of Flexible Polymer Chains Using Interferometer-Based AFM. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:526. [PMID: 35159871 PMCID: PMC8839736 DOI: 10.3390/nano12030526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
We estimate the elasticity of single polymer chains using atomic force microscope (AFM)-based oscillatory experiments. An accurate estimate of elasticity using AFM is limited by assumptions in describing the dynamics of an oscillating cantilever. Here, we use a home-built fiber-interferometry-based detection system that allows a simple and universal point-mass description of cantilever oscillations. By oscillating the cantilever base and detecting changes in cantilever oscillations with an interferometer, we extracted stiffness versus extension profiles for polymers. For polyethylene glycol (PEG) in a good solvent, stiffness-extension data showed significant deviation from conventional force-extension curves (FECs) measured in constant velocity pulling experiments. Furthermore, modeling stiffness data with an entropic worm-like chain (WLC) model yielded a persistence length of (0.5 ± 0.2 nm) compared to anomaly low value (0.12 nm ± 0.01) in conventional pulling experiments. This value also matched well with equilibrium measurements performed using magnetic tweezers. In contrast, polystyrene (PS) in a poor solvent, like water, showed no deviation between the two experiments. However, the stiffness profile for PS in good solvent (8M Urea) showed significant deviation from conventional force-extension curves. We obtained a persistence length of (0.8 ± 0.2 nm) compared to (0.22 nm ± 0.01) in pulling experiments. Our unambiguous measurements using interferometer yield physically acceptable values of persistence length. It validates the WLC model in good solvents but suggests caution for its use in poor solvents.
Collapse
Affiliation(s)
| | | | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, India; (V.A.); (S.P.S.D.)
| |
Collapse
|
4
|
Ahlawat V, Rajput SS, Patil S. Elasticity of single flexible polymer chains in good and poor solvents. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
An Insight into Amorphous Shear Band in Magnetorheological Solid by Atomic Force Microscope. MATERIALS 2021; 14:ma14164384. [PMID: 34442907 PMCID: PMC8402054 DOI: 10.3390/ma14164384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/04/2022]
Abstract
Micro mechanism consideration is critical for gaining a thorough understanding of amorphous shear band behavior in magnetorheological (MR) solids, particularly those with viscoelastic matrices. Heretofore, the characteristics of shear bands in terms of formation, physical evolution, and response to stress distribution at the localized region have gone largely unnoticed and unexplored. Notwithstanding these limitations, atomic force microscopy (AFM) has been used to explore the nature of shear band deformation in MR materials during stress relaxation. Stress relaxation at a constant low strain of 0.01% and an oscillatory shear of defined test duration played a major role in the creation of the shear band. In this analysis, the localized area of the study defined shear bands as varying in size and dominantly deformed in the matrix with no evidence of inhibition by embedded carbonyl iron particles (CIPs). The association between the shear band and the adjacent zone was further studied using in-phase imaging of AFM tapping mode and demonstrated the presence of localized affected zone around the shear band. Taken together, the results provide important insights into the proposed shear band deformation zone (SBDZ). This study sheds a contemporary light on the contentious issue of amorphous shear band deformation behavior and makes several contributions to the current literature.
Collapse
|
6
|
Rajput SS, Deopa SPS, Ajith VJ, Kamerkar SC, Patil S. Validity of point-mass model in off-resonance dynamic atomic force microscopy. NANOTECHNOLOGY 2021; 32:405702. [PMID: 34144547 DOI: 10.1088/1361-6528/ac0cb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
The quantitative measurement of viscoelasticity of nano-scale entities is an important goal of nanotechnology research and there is considerable progress with advent of dynamic atomic force microscopy. The hydrodynamics of cantilever, the force sensor in AFM measurements, plays a pivotal role in quantitative estimates of nano-scale viscoelasticity. The point-mass (PM) model, wherein the AFM cantilever is approximated as a point-mass with mass-less spring is widely used in dynamic AFM analysis and its validity, particularly in liquid environments, is debated. It is suggested that the cantilever must be treated as a continuous rectangular beam to obtain accurate estimates of nano-scale viscoelasticity of materials it is probing. Here, we derived equations, which relate stiffness and damping coefficient of the material under investigation to measured parameters, by approximating cantilever as a point-mass and also considering the full geometric details. These equations are derived for both tip-excited as well as base-excited cantilevers. We have performed off-resonance dynamic atomic force spectroscopy on a single protein molecule to investigate the validity of widely used PM model. We performed measurements with AFMs equipped with different cantilever excitation methods as well as detection schemes to measure cantilever response. The data was analyzed using both, continuous beam model and the PM model. We found that both models yield same results when the experiments are performed in truly off-resonance regime with small amplitudes and the cantilever stiffness is much higher than the interaction stiffness. Our findings suggest that a simple PM approximation based model is adequate to describe the dynamics, provided care is taken while performing experiments so that the approximations used in these models are valid.
Collapse
Affiliation(s)
- Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Surya Pratap S Deopa
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - V J Ajith
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sukrut C Kamerkar
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
7
|
Rajput SS, Deopa SPS, Yadav J, Ahlawat V, Talele S, Patil S. The nano-scale viscoelasticity using atomic force microscopy in liquid environment. NANOTECHNOLOGY 2021; 32:085103. [PMID: 33120375 DOI: 10.1088/1361-6528/abc5f3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We measured viscoelasticity of two nanoscale systems, single protein molecules and molecular layers of water confined between solid walls. In order to quantify the viscoelastic response of these nanoscale systems in liquid environment, the measurements are performed using two types of atomic force microscopes (AFMs), which employ different detection schemes to measure the cantilever response. We used a deflection detection scheme, available in commercial AFMs, that measures cantilever bending and a fibre-interferometer based detection which measures cantilever displacement. The hydrodynamics of the cantilever is modelled using Euler-Bernoulli equation with appropriate boundary conditions which accommodate both detection schemes. In a direct contradiction with many reports in the literature, the dissipation coefficient of a single octomer of titin I278 is found to be immeasurably low. The upper bound on the dissipation coefficient is 5 × 10-7 kg s-1, which is much lower than the reported values. The entropic stiffness of single unfolded domains of protein measured using both methods is in the range of 10 mN m-1. We show that in a conventional deflection detection measurement, the phase of the bending signal can be a primary source of artefacts in the dissipation estimates. It is recognized that the measurement of cantilever displacement, which has negligibly small phase lag due to hydrodynamics of the cantilever at low excitation frequencies, is better suited for ensuring artefact-free measurement of viscoelasticity compared to the measurement of the cantilever bending. Further, it was possible to measure dissipation in molecular layers of water confined between the tip and the substrate using fibre interferometer based AFM with similar experimental parameters. It confirms that the dissipation coefficient of a single I278 is below the detection limit of AFM. The results shed light on the discrepancy observed in the measured diffusional dynamics of protein collapse measured using Force spectroscopic techniques and single-molecule optical techniques.
Collapse
Affiliation(s)
- Shatruhan Singh Rajput
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Surya Pratap S Deopa
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jyoti Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Vikhyaat Ahlawat
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Saurabh Talele
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|