1
|
Elkomy MH, Khallaf RA, Mahmoud MO, Hussein RRS, El-Kalaawy AM, Abdel-Razik ARH, Aboud HM. Intratracheally Inhalable Nifedipine-Loaded Chitosan-PLGA Nanocomposites as a Promising Nanoplatform for Lung Targeting: Snowballed Protection via Regulation of TGF-β/β-Catenin Pathway in Bleomycin-Induced Pulmonary Fibrosis. Pharmaceuticals (Basel) 2021; 14:ph14121225. [PMID: 34959627 PMCID: PMC8707652 DOI: 10.3390/ph14121225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis is a serious ailment that may progress to lung remodeling and demolition, where the key participants in its incidence are fibroblasts responding to growth factors and cellular calcium swinging. Calcium channel blockers, like nifedipine (NFD), may represent auspicious agents in pulmonary fibrosis treatment. Unfortunately, NFD bears complicated pharmacodynamics and a diminished systemic bioavailability. Thus, the current study aimed to develop a novel, non-invasive nanoplatform for NFD for direct/effective pulmonary targeting via intratracheal instillation. A modified solvent emulsification–evaporation method was adopted for the fabrication of NFD-nanocomposites, integrating poly(D,L-lactide-co-glycolide) (PLGA), chitosan (CTS), and polyvinyl alcohol, and optimized for different physiochemical properties according to the 32 full factorial design. Additionally, the aerodynamic behavior of the nanocomposites was scrutinized through cascade impaction. Moreover, the pharmacokinetic investigations were conducted in rats. Furthermore, the optimum formulation was tested in bleomycin-induced pulmonary fibrosis in rats, wherein fibrotic and oxidative stress parameters were measured. The optimum nanocomposites disclosed a nanosized spherical morphology (226.46 nm), a high entrapment efficiency (61.81%) and a sustained release profile over 24 h (50.4%). As well, it displayed a boosted in vitro lung deposition performance with a mass median aerodynamic diameter of 1.12 µm. Pharmacokinetic studies manifested snowballed bioavailability of the optimal nanocomposites by 3.68- and 2.36-fold compared to both the oral and intratracheal suspensions, respectively. The intratracheal nanocomposites revealed a significant reduction in lung fibrotic and oxidative stress markers notably analogous to normal control besides repairing abnormality in TGF-β/β-catenin pathway. Our results conferred a compelling proof-of-principle that NFD-CTS-PLGA nanocomposites can function as a promising nanoparadigm for pulmonary fibrosis management.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
- Correspondence: ; Tel.: +966-56-096-7705
| | - Rasha A. Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
| | - Mohamed O. Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Raghda R. S. Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 12055, Egypt
| | - Asmaa M. El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | | | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
| |
Collapse
|
2
|
Coates AL, Wanger J, Cockcroft DW, Culver BH, Carlsen KH, Diamant Z, Gauvreau G, Hall GL, Hallstrand TS, Horvath I, de Jongh FH, Joos G, Kaminsky DA, Laube B, Leuppi JD, Sterk PJ. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur Respir J 2017; 49:49/5/1601526. [DOI: 10.1183/13993003.01526-2016] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 01/15/2017] [Indexed: 11/05/2022]
Abstract
This international task force report updates general considerations for bronchial challenge testing and the performance of the methacholine challenge test. There are notable changes from prior recommendations in order to accommodate newer delivery devices. Rather than basing the test result upon a methacholine concentration (provocative concentration (PC20) causing a 20% fall in forced expiratory volume in 1 s (FEV1)), the new recommendations base the result upon the delivered dose of methacholine causing a 20% fall in FEV1 (provocative dose (PD20)). This end-point allows comparable results from different devices or protocols, thus any suitable nebuliser or dosimeter may be used, so long as the delivery characteristics are known. Inhalation may be by tidal breathing using a breath-actuated or continuous nebuliser for 1 min (or more), or by a dosimeter with a suitable breath count. Tests requiring maximal inhalations to total lung capacity are not recommended because the bronchoprotective effect of a deep breath reduces the sensitivity of the test.
Collapse
|
3
|
Wee WB, Tavernini S, Martin AR, Amirav I, Majaesic C, Finlay WH. Dry Powder Inhaler Delivery of Tobramycin in In Vitro Models of Tracheostomized Children. J Aerosol Med Pulm Drug Deliv 2017; 30:64-70. [DOI: 10.1089/jamp.2016.1309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wallace B. Wee
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Scott Tavernini
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Andrew R. Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Israel Amirav
- Department of Pediatric Pulmonology, University of Alberta, Edmonton, Canada
| | - Carina Majaesic
- Department of Pediatric Pulmonology, University of Alberta, Edmonton, Canada
| | - Warren H. Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Brunner N, de Jesus Perez VA, Richter A, Haddad F, Denault A, Rojas V, Yuan K, Orcholski M, Liao X. Perioperative pharmacological management of pulmonary hypertensive crisis during congenital heart surgery. Pulm Circ 2014; 4:10-24. [PMID: 25006417 DOI: 10.1086/674885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 09/12/2013] [Indexed: 01/12/2023] Open
Abstract
Pulmonary hypertensive crisis is an important cause of morbidity and mortality in patients with pulmonary arterial hypertension secondary to congenital heart disease (PAH-CHD) who require cardiac surgery. At present, prevention and management of perioperative pulmonary hypertensive crisis is aimed at optimizing cardiopulmonary interactions by targeting prostacyclin, endothelin, and nitric oxide signaling pathways within the pulmonary circulation with various pharmacological agents. This review is aimed at familiarizing the practitioner with the current pharmacological treatment for dealing with perioperative pulmonary hypertensive crisis in PAH-CHD patients. Given the life-threatening complications associated with pulmonary hypertensive crisis, proper perioperative planning can help anticipate cardiopulmonary complications and optimize surgical outcomes in this patient population.
Collapse
Affiliation(s)
- Nathan Brunner
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Alice Richter
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - François Haddad
- Division of Cardiology, Stanford School of Medicine, Stanford, California, USA
| | - André Denault
- Division of Anesthesiology, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Vanessa Rojas
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Mark Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Xiaobo Liao
- Division of Pulmonary and Critical Care Medicine, Stanford School of Medicine, Stanford, California, USA ; Division of Cardiothoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Kamalaporn H, Leung K, Nagel M, Kittanakom S, Calvieri B, Reithmeier RAF, Coates AL. Aerosolized liposomal Amphotericin B: a potential prophylaxis of invasive pulmonary aspergillosis in immunocompromised patients. Pediatr Pulmonol 2014; 49:574-80. [PMID: 23843366 DOI: 10.1002/ppul.22856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/10/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Aerosolized liposomal Amphotericin B may reduce the incidence of invasive pulmonary Aspergillosis in adults with chemotherapy-induced prolonged neutropenia with less nephrotoxicity. The breath-actuated AeroEclipse® BAN nebulizer is very efficient and minimizes environmental drug contamination since no aerosol is produced, unless the patient is inspiring through the device. Our aim is to develop an appropriate delivery system suitable for children that does not disrupt the liposomes due to the shear forces in nebulization. METHODS This is an in vitro experimental study in vitro. Six ml of 4 mg/ml liposomal Amphotericin B solution (AmBisome®; Astellas Pharma Inc., Markham, Ontario, CA) was nebulized with the breath-actuated nebulizer (AeroEclipse®; Trudell Medical International, Canada) and captured by the glass liquid impinger. Sodium dodecyl sulfate was used as detergent to disrupt the liposomes in control samples. Gel filtration, electron microscopy, and high performance liquid chromatography (HPLC) were used to compare the size and shape of the liposomes, and amount of the drug before and after nebulization. The aerosol particle size was obtained by the laser diffraction. RESULTS After nebulization, 97.5% of amphotericin B was captured by the liquid impinger and detected by HPLC. Gel filtration and electron microscopy demonstrated that the drug remained in its liposomal configuration after nebulization. The mass median diameter (MMD) was 3.7 μm and 66% of aerosol particles were less than 5 μm in diameter. CONCLUSIONS We demonstrated that liposomal Amphotericin B can be nebulized successfully without disrupting the liposomes and minimize drug loss by using the breath-actuated nebulizer.
Collapse
Affiliation(s)
- Harutai Kamalaporn
- Division of Pulmonology, Department of Pediatrics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
6
|
Miller J, Neubig R, Clemons C, Kreider K, Wilber J, Young G. Nanoparticle deposition onto biofilms. Ann Biomed Eng 2013; 41:53-67. [PMID: 22878680 PMCID: PMC3524401 DOI: 10.1007/s10439-012-0626-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/11/2012] [Indexed: 11/25/2022]
Abstract
We develop a mathematical model of nanoparticles depositing onto and penetrating into a biofilm grown in a parallel-plate flow cell. We carry out deposition experiments in a flow cell to support the modeling. The modeling and the experiments are motivated by the potential use of polymer nanoparticles as part of a treatment strategy for killing biofilms infecting the deep passages in the lungs. In the experiments and model, a fluid carrying polymer nanoparticles is injected into a parallel-plate flow cell in which a biofilm has grown over the bottom plate. The model consists of a system of transport equations describing the deposition and diffusion of nanoparticles. Standard asymptotic techniques that exploit the aspect ratio of the flow cell are applied to reduce the model to two coupled partial differential equations. We perform numerical simulations using the reduced model. We compare the experimental observations with the simulation results to estimate the nanoparticle sticking coefficient and the diffusion coefficient of the nanoparticles in the biofilm. The distributions of nanoparticles through the thickness of the biofilm are consistent with diffusive transport, and uniform distributions through the thickness are achieved in about four hours. Nanoparticle deposition does not appear to be strongly influenced by the flow rate in the cell for the low flow rates considered.
Collapse
Affiliation(s)
- J.K. Miller
- Department of Mathematics, University of Akron, Akron, OH, 44325-4002
| | - R. Neubig
- Department of Mathematics, University of Akron, Akron, OH, 44325-4002
| | - C.B. Clemons
- Department of Mathematics, University of Akron, Akron, OH, 44325-4002
| | - K.L. Kreider
- Department of Mathematics, University of Akron, Akron, OH, 44325-4002
| | - J.P. Wilber
- Department of Mathematics, University of Akron, Akron, OH, 44325-4002
| | - G.W. Young
- Department of Mathematics, University of Akron, Akron, OH, 44325-4002
| |
Collapse
|
7
|
Oishi P, Datar SA, Fineman JR. Pediatric pulmonary arterial hypertension: current and emerging therapeutic options. Expert Opin Pharmacother 2011; 12:1845-64. [PMID: 21609302 DOI: 10.1517/14656566.2011.585636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a rare disease in neonates, infants and children that is associated with significant morbidity and mortality. An adequate understanding of the controlling pathophysiologic mechanisms is lacking and although mortality has decreased as therapeutic options have increased over the past several decades, outcomes remain unacceptable. AREAS COVERED This review summarizes the currently available therapies for neonates, infants and children with PAH and describes emerging therapies in the context of what is known about the underlying pathophysiology of the disease. EXPERT OPINION All of the currently approved PAH therapies impact one of three endothelial-based pathways: nitric oxide-guanosine-3'-5'cyclic monophosphate, prostacyclin or endothelin-1. The beneficial effects of these agents may relate to their impact on pulmonary vascular tone, and/or their antiproliferative and antithrombotic properties. Fundamental advances in PAH therapy are likely to relate to: i) a better understanding of PAH subpopulations, allowing for therapies to be better tailored to individual patients and pathophysiologic processes; and ii) therapies that promote the regression of advanced structural remodeling.
Collapse
Affiliation(s)
- Peter Oishi
- Cardiovascular Research Institute, Division of Critical Care Medicine, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-1346, USA.
| | | | | |
Collapse
|
8
|
Coates AL, Green M, Leung K, Chan J, Ribeiro N, Ratjen F, Charron M. A comparison of amount and speed of deposition between the PARI LC STAR® jet nebulizer and an investigational eFlow® nebulizer. J Aerosol Med Pulm Drug Deliv 2011; 24:157-63. [PMID: 21361784 DOI: 10.1089/jamp.2010.0861] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The potency and physical properties of many of the drugs used in the treatment of cystic fibrosis necessitates the use of nebulization, a relatively time-consuming pulmonary delivery method. Newer, faster, and more efficient delivery systems are being proposed. The purposes of this study was to compare the length of time it took to deliver the equivalent of normal saline nebulized for 10 min in a PARI LC STAR(®) nebulizer to that of an investigational PARI eFlow(®). METHODS Six normal adults inhaled a 4-mL (36-mg) charge volume of saline from the LC STAR(®) or a 2.5-mL (22.5-mg) charge volume from the investigational eFlow(®). The saline was mixed with (99m)Tc-DTPA to allow two-dimensional imaging. The inhalation was preceded by a xenon equilibration scan to allow more accurate separation of deposition into central and peripheral lung regions. RESULTS The investigational eFlow(®) delivered 8.6 ± 1.0 mg, approximately 90% of the lung dose compared to the LC STAR(®), 9.6 ± 1.0 mg, but did in less than half the time (p < 0.02 for both). There were no differences in central versus peripheral distribution for either device. CONCLUSIONS In conclusion the investigational eFlow(®) was both faster and more efficient than the LC STAR(®).
Collapse
Affiliation(s)
- Allan L Coates
- Division of Nuclear Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
9
|
Rao S, Bartle D, Patole S. Current and future therapeutic options for persistent pulmonary hypertension in the newborn. Expert Rev Cardiovasc Ther 2010; 8:845-62. [PMID: 20528642 DOI: 10.1586/erc.09.186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a potentially life-threatening condition that is characterized by supra-systemic pulmonary vascular resistance causing right-to-left shunting through the ductus arteriosus and/or foramen ovale, leading to a vicious cycle of hypoxemia, acidosis and further pulmonary vasoconstriction. Advances in neonatology including surfactant instillation, high-frequency ventilation, extracorporeal membrane oxygenation and, most importantly, inhaled nitric oxide (INO), have revolutionized the management of PPHN. However, given that INO does not improve oxygenation in a significant proportion (30-40%) of cases, there is an urgent need to consider other therapeutic options for PPHN. The issue is more important for developing nations with a higher PPHN-related health burden and limited resources. This article discusses the evidence about INO in term and preterm neonates in brief, and focuses mainly on the potential alternative drugs in the management of PPHN.
Collapse
Affiliation(s)
- Shripada Rao
- Department of Neonatal Paediatrics, KEM Hospital for Women, Bagot road, Subiaco, Perth 6008, Western Australia, Australia
| | | | | |
Collapse
|
10
|
SOOD BG, SHEN Y, LATIF Z, GALLI B, DAWE EJ, HAACKE EM. Effective aerosol delivery during high-frequency ventilation in neonatal pigs. Respirology 2010; 15:551-5. [DOI: 10.1111/j.1440-1843.2010.01714.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
The prostacyclins-prostanoids were one of the first medications used to treat pulmonary arterial hypertension (PAH). Three prostanoids have been developed to treat PAH: epoprostenol, treprostinil, and iloprost. In the acute setting, experience is growing, using the inhaled forms of these three medications. Inhalation may improve ventilation/perfusion matching, whereas in the intravenous form these medications may cause nonselective pulmonary vasodilation and may worsen ventilation/perfusion matching. Currently, there are no universal recommendations for dosing delivery of inhaled prostanoids to intubated patients in the intensive care unit setting.
Collapse
|
12
|
High performance liquid chromatography using UV detection for the quantification of milrinone in plasma: improved sensitivity for inhalation. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:657-60. [PMID: 19201666 DOI: 10.1016/j.jchromb.2009.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 01/16/2009] [Accepted: 01/19/2009] [Indexed: 12/28/2022]
Abstract
An improved analytical assay was developed and validated for the quantification of milrinone concentrations in patients undergoing cardiac surgery. A solid-phase extraction was optimized to isolate milrinone from a plasma matrix followed by HPLC using UV detection. Plasma samples (1 ml) were extracted using a C(18) solid-phase cartridge. Milrinone was separated on a strong cation exchange analytical column maintained at 23.4 degrees C. The mobile phase consisted of a gradient (10:90 to 45:55), 0.05 M phosphate buffer (pH 3):acetonitrile. Calibration curves were linear in the concentration range of 1.25-320 ng/ml. Mean drug recovery and accuracy were respectively > or =96% and > or =92%. Intra- and inter-day precisions (CV%) were < or =6.7% and < or =7.9%, respectively. This method proved to be reliable, specific and accurate. Using different types of column for extraction and separation of milrinone proved to be necessary to achieve the sensitivity and specificity required when milrinone is given by inhalation.
Collapse
|
13
|
Plumley C, Gorman EM, El-Gendy N, Bybee CR, Munson EJ, Berkland C. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm 2008; 369:136-43. [PMID: 19015016 DOI: 10.1016/j.ijpharm.2008.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/09/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
Efficient administration of drugs represents a leading challenge in pulmonary medicine. Dry powder aerosols are of great interest compared to traditional aerosolized liquid formulations in that they may offer improved stability, ease of administration, and simple device design. Particles 1-5microm in size typically facilitate lung deposition. Nanoparticles may be exhaled as a result of their small size; however, they are desired to enhance the dissolution rate of poorly soluble drugs. Nanoparticles of the hypertension drug nifedipine were co-precipitated with stearic acid to form a colloid exhibiting negative surface charge. Nifedipine nanoparticle colloids were destabilized by using sodium chloride to disrupt the electrostatic repulsion between particles as a means to achieve the agglomerated nanoparticles of a controlled size. The aerodynamic performance of agglomerated nanoparticles was determined by cascade impaction. The powders were found to be well suited for pulmonary delivery. In addition, nanoparticle agglomerates revealed enhanced dissolution of the drug species suggesting the value of this formulation approach for poorly water-soluble pulmonary medicines. Ultimately, nifedipine powders are envisioned as an approach to treat pulmonary hypertension.
Collapse
Affiliation(s)
- Carl Plumley
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, KS 66047, United States of America
| | | | | | | | | | | |
Collapse
|
14
|
Coates AL, Green M, Leung K, Chan J, Ribeiro N, Louca E, Ratjen F, Charron M, Tservistas M, Keller M. Rapid pulmonary delivery of inhaled tobramycin for Pseudomonas infection in cystic fibrosis: a pilot project. Pediatr Pulmonol 2008; 43:753-9. [PMID: 18613006 DOI: 10.1002/ppul.20850] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Patients with cystic fibrosis spend as much 30 min a day inhaling tobramycin. Could a new rapid system deposit the equivalent amount of tobramycin faster? METHODS Six healthy adult males inhaled 5 ml (300 mg) of tobramycin from a breath enhanced nebulizer and either 125 mg (n = 3) or 150 mg (n = 3) from a vibrating membrane system with a large or small aerosol mixing chamber respectively. A radiolabel was added to the solution and shown to "track" with the tobramycin. Imaging was done with a dual headed gamma camera. Because the radiolabel will be cleared by mucociliary action during administration, algorithms were developed to allow the comparison of a slower system to a faster one. RESULTS Both formulations were well tolerated. The lung deposition was 16.6 +/- 3.2% (mean +/- SD) of the charge dose delivered in 10.9 +/- 1.0 min for the breath enhanced nebulizer versus 32.0 +/- 5.1% delivered in 2.5 +/- 0.4 min from the vibrating membrane system. The absolute pulmonary delivery of tobramycin was 49.9 +/- 9.6 versus 43.9 +/- 4.8 mg for the two systems respectively, differences that were statistically significant (pair t-test) but unlikely to be clinically significant. There was a similar deposition of tobramycin for the 125 and 150 mg dose. CONCLUSIONS It is possible to deliver an equivalent amount of tobramycin in a shorter period of time with the new vibrating membrane system and a more concentrated formulation. These data will allow the design of a comparison in patients with CF.
Collapse
Affiliation(s)
- Allan L Coates
- Division of Nuclear Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jet nebulization of prostaglandin E1 during neonatal mechanical ventilation: stability, emitted dose and aerosol particle size. Pharmacol Res 2007; 56:531-41. [PMID: 17997106 DOI: 10.1016/j.phrs.2007.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND We have previously reported the safety of aerosolized PGE1 in neonatal hypoxemic respiratory failure. The aim of this study is to characterize the physicochemical properties of PGE1 solution, stability, emitted dose and the aerodynamic particle size distribution (APSD) of PGE1 aerosol in a neonatal ventilator circuit. METHODS PGE1 was diluted in normal saline and physicochemical properties of the solution characterized. Chemical stability and emitted dose were evaluated during jet nebulization in a neonatal conventional (CMV) or high frequency (HFV) ventilator circuit by a high performance liquid chromatography-mass spectrometry method. The APSD of the PGE1 aerosol was evaluated with a 6-stage cascade impactor during CMV. RESULTS PGE1 solution in normal saline had a low viscosity (0.9818 cP) and surface tension (60.8 mN/m) making it suitable for aerosolization. Little or no degradation of PGE1 was observed in samples from aerosol condensates, the PGE1 solution infused over 24h, or the residual solution in the nebulizer. The emitted dose of PGE1 following jet nebulization was 32-40% during CMV and 0.1% during HFV. The PGE1 aerosol had a mass median aerodynamic diameter of 1.4 microm and geometric S.D. of 2.9 with 90% of particles being <4.0 microm in size. CONCLUSION Nebulization of PGE1 during neonatal CMV or HFV is efficient and results in rapid nebulization without altering the chemical structure. On the basis of the physicochemical properties of PGE1 solution and the APSD of the PGE1 aerosol, one can predict predominantly alveolar deposition of aerosolized PGE1.
Collapse
|
16
|
Sola A, Baquero H. [Oral sildenafil in neonatal medicine: ''tested in adults also used in neonates'']. An Pediatr (Barc) 2007; 66:167-76. [PMID: 17306104 DOI: 10.1157/13098935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- A Sola
- Mid Atlantic Neonatology Associates, Morristown Memorial Hospital, Morristown, NJ, USA.
| | | |
Collapse
|
17
|
Corcoran TE, Venkataramanan R, Mihelc KM, Marcinkowski AL, Ou J, McCook BM, Weber L, Carey ME, Paterson DL, Pilewski JM, McCurry KR, Husain S. Aerosol deposition of lipid complex amphotericin-B (Abelcet) in lung transplant recipients. Am J Transplant 2006; 6:2765-73. [PMID: 17049064 DOI: 10.1111/j.1600-6143.2006.01529.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lung transplant recipients exhibit a high incidence of invasive aspergillosis. The inhalation of lipid complex amphotericin-B (Abelcet; ABLC) offers a possible prophylactic strategy. The goals of this study were to select the optimal nebulizer delivery system for ABLC and to measure deposited aerosol dose in 12 lung transplant recipients. In vitro testing was performed to select a nebulizer delivery system, and an empirical model was used to estimate lung deposition. Estimated pulmonary doses varied by as much as 2-fold between different nebulizers. Aerosol deposition testing was performed in six single and six double lung recipients, each of whom received one 7 mL (35 mg) nebulized dose of Technetium-labeled ABLC using the selected nebulizer. In single lung recipients, the average deposited doses were 3.9 +/- 1.6 mg (mean +/- S.D.) in the allograft versus 2.1 +/- 1.1 mg in the native lung. Double lung recipients deposited on average 2.8 +/- 0.8 mg (left lung) and 4.0 +/- 1.3 mg (right lung). The drug was well distributed throughout the lungs, but delivery to the native lung was in some cases suboptimal. These studies provide an important precursor to studies of the efficacy of inhaled ABLC as a prophylaxis of invasive aspergillosis after lung transplant.
Collapse
Affiliation(s)
- T E Corcoran
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|