1
|
Rodriguez Gonzalez C, Schevel H, Hansen G, Schwerk N, Lachmann N. Pulmonary Alveolar Proteinosis and new therapeutic concepts. KLINISCHE PADIATRIE 2024; 236:73-79. [PMID: 38286410 PMCID: PMC10883756 DOI: 10.1055/a-2233-1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
Pulmonary alveolar proteinosis (PAP) is an umbrella term used to refer to a pulmonary syndrome which is characterized by excessive accumulation of surfactant in the lungs of affected individuals. In general, PAP is a rare lung disease affecting children and adults, although its prevalence and incidence is variable among different countries. Even though PAP is a rare disease, it is a prime example on how modern medicine can lead to new therapeutic concepts, changing ways and techniques of (genetic) diagnosis which ultimately led into personalized treatments, all dedicated to improve the function of the impaired lung and thus life expectancy and quality of life in PAP patients. In fact, new technologies, such as new sequencing technologies, gene therapy approaches, new kind and sources of stem cells and completely new insights into the ontogeny of immune cells such as macrophages have increased our understanding in the onset and progression of PAP, which have paved the way for novel therapeutic concepts for PAP and beyond. As of today, classical monocyte-derived macrophages are known as important immune mediator and immune sentinels within the innate immunity. Furthermore, macrophages (known as tissue resident macrophages (TRMs)) can also be found in various tissues, introducing e. g. alveolar macrophages in the broncho-alveolar space as crucial cellular determinants in the onset of PAP and other lung disorders. Given recent insights into the onset of alveolar macrophages and knowledge about factors which impede their function, has led to the development of new therapies, which are applied in the context of PAP, with promising implications also for other diseases in which macrophages play an important role. Thus, we here summarize the latest insights into the various forms of PAP and introduce new pre-clinical work which is currently conducted in the framework of PAP, introducing new therapies for children and adults who still suffer from this severe, potentially life-threatening disease.
Collapse
Affiliation(s)
- Claudio Rodriguez Gonzalez
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Hannah Schevel
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
| | - Nicolaus Schwerk
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine,
Hannover, Germany
| |
Collapse
|
2
|
Wu XK, Lin Q. Pulmonary alveolar proteinosis complicated with nocardiosis: A case report and review of the literature. World J Clin Cases 2021; 9:2874-2883. [PMID: 33969072 PMCID: PMC8058687 DOI: 10.12998/wjcc.v9.i12.2874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a pulmonary syndrome wherein large volumes of phospholipid and protein-rich surfactants accumulate within the alveoli. PAP forms include primary (auto-immune PAP), secondary, and congenital. Nocardiosis is a form of suppurative disease induced upon infection with bacteria of the Nocardia genus. Clinically, cases of PAP complicated with Nocardia infections are rare, regardless of form. Unfortunately, as such, they are easily overlooked or misdiagnosed. We describe, here, the case of a patient suffering from simultaneous primary PAP and nocardiosis.
CASE SUMMARY A 45-year-old Chinese man, without history of relevant disease, was admitted to our hospital on August 8, 2018 to address complaints of activity-related respiratory exertion and cough lasting over 6 mo. Lung computed tomography (CT) revealed diffuse bilateral lung infiltration with local consolidation in the middle right lung lobe. Subsequent transbronchial lung biopsy and CT-guided lung biopsy led to a diagnosis of primary PAP (granulocyte-macrophage colony-stimulating factor antibody-positive) complicated with nocardiosis (periodic acid-Schiff-positive). After a 6 mo course of anti-infective treatment (sul-famethoxazole), the lesion was completely absorbed, such that only fibrous foci remained, and the patient exhibited significant symptom improvement. Follow-up also showed improvement in pulmonary function and the CT imaging findings of PAP. No whole-lung lavage has been conducted to date. This case highlights that active anti-nocardia treatment may effectively improve the symptoms and alleviate PAP in patients with PAP and nocardia, possibly reducing the need for whole-lung lavage.
CONCLUSION When evaluating patients presenting with PAP and pulmonary infections, the potential for nocardiosis should be considered.
Collapse
Affiliation(s)
- Xiao-Kang Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, China
| | - Quan Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, China
| |
Collapse
|
3
|
Bush A, Pabary R. Pulmonary alveolarproteinosis in children. Breathe (Sheff) 2020; 16:200001. [PMID: 32684993 PMCID: PMC7341618 DOI: 10.1183/20734735.0001-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is an umbrella term for a wide spectrum of conditions that have a very characteristic appearance on computed tomography. There is outlining of the secondary pulmonary lobules on the background of ground-glass shadowing and pathologically, filling of the alveolar spaces with normal or abnormal surfactant. PAP is rare and the common causes in children are very different from those seen in adults; autoimmune PAP is rare and macrophage blockade not described in children. There are many genetic causes of PAP, the best known of which are mutations in the genes encoding surfactant protein (SP)-B, SP-C, thyroid transcription factor 1, ATP-binding cassette protein 3, and the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α- and β- chains. PAP may also be a manifestation of rheumatological and metabolic disease, congenital immunodeficiency, and haematological malignancy. Precise diagnosis of the underlying cause is essential in planning treatment, as well as for genetic counselling. The evidence base for treatment is poor. Some forms of PAP respond well to whole-lung lavage, and autoimmune PAP, which is much commoner in adults, responds to inhaled or subcutaneous GM-CSF. Emerging therapies based on studies in murine models of PAP include stem-cell transplantation for GM-CSF receptor mutations. EDUCATIONAL AIMS To understand when to suspect that a child has pulmonary alveolar proteinosis (PAP) and how to confirm that this is the cause of the presentation.To show that PAP is an umbrella term for conditions characterised by alveolar filling by normal or abnormal surfactant, and that this term is the start, not the end, of the diagnostic journey.To review the developmental differences in the spectrum of conditions that may cause PAP, and specifically to understand the differences between causes in adults and children.To discuss when to treat PAP with whole-lung lavage and/or granulocyte-macrophage colony-stimulating factor, and review potential promising new therapies.
Collapse
Affiliation(s)
- Andrew Bush
- Imperial College, London, UK
- Royal Brompton Harefield NHS Foundation Trust, London, UK
| | - Rishi Pabary
- Imperial College, London, UK
- Royal Brompton Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
McCarthy C, Kokosi M, Bonella F. Shaping the future of an ultra-rare disease: unmet needs in the diagnosis and treatment of pulmonary alveolar proteinosis. Curr Opin Pulm Med 2019; 25:450-458. [PMID: 31365379 DOI: 10.1097/mcp.0000000000000601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Pulmonary alveolar proteinosis (PAP) can be considered the archetype of ultra-rare diseases with a prevalence of under 10 cases per million. We discuss the classification of PAP, the current diagnostic practice and the supplementary role of genetic testing and granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in the diagnosis of congenital and hereditary PAP. We report on novel therapeutic approaches such as GM-CSF substitution, stem cell transplantation, pioglitazone, statins and immunomodulation. RECENT FINDINGS The discovery of new genetic mutations underlying this syndrome raises the question whether the classification should be radically revised in the future. Serum GM-CSF autoantibody is the best diagnostic marker for autoimmune PAP, the most common form, but does not correlate with disease severity. Several circulating biomarkers have been investigated to assess disease activity and predict outcome. Imaging techniques have also enormously evolved and offer new tools to quantify disease burden and possibly drive therapeutic decisions. Promising clinical trials are ongoing and will generate new treatment strategies besides or in addition to whole lung lavage in the next future. SUMMARY Despite impressive advances in understanding pathogenesis, PAP remains a rare syndrome with several unanswered questions impacting diagnosis, management and treatment, and, as a result, patients' quality of life.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, Rare Lung Disease Centre, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Francesco Bonella
- Department of Pneumology, Centre for Interstitial and Rare Lung Disease, Ruhrlandklinik, University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, Wang T, Morgan C, Cottin V, McCarthy C. Pulmonary alveolar proteinosis. Nat Rev Dis Primers 2019; 5:16. [PMID: 30846703 DOI: 10.1038/s41572-019-0066-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by the accumulation of alveolar surfactant and dysfunction of alveolar macrophages. PAP results in progressive dyspnoea of insidious onset, hypoxaemic respiratory failure, secondary infections and pulmonary fibrosis. PAP can be classified into different types on the basis of the pathogenetic mechanism: primary PAP is characterized by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling and can be autoimmune (caused by elevated levels of GM-CSF autoantibodies) or hereditary (due to mutations in CSF2RA or CSF2RB, encoding GM-CSF receptor subunits); secondary PAP results from various underlying conditions; and congenital PAP is caused by mutations in genes involved in surfactant production. In most patients, pathogenesis is driven by reduced GM-CSF-dependent cholesterol clearance in alveolar macrophages, which impairs alveolar surfactant clearance. PAP has a prevalence of at least 7 cases per million individuals in large population studies and affects men, women and children of all ages, ethnicities and geographical locations irrespective of socioeconomic status, although it is more-prevalent in smokers. Autoimmune PAP accounts for >90% of all cases. Management aims at improving symptoms and quality of life; whole-lung lavage effectively removes excessive surfactant. Novel pathogenesis-based therapies are in development, targeting GM-CSF signalling, immune modulation and cholesterol homeostasis.
Collapse
Affiliation(s)
- Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University, Niigata, Japan
| | - Francesco Bonella
- Interstitial and Rare Lung Disease Unit, Pneumology Department, Ruhrlandklinik University Hospital, University of Essen, Essen, Germany
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Matthias Griese
- Pediatric Pneumology, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - John Hamilton
- University of Melbourne, Parkville, Victoria, Australia
| | - Tisha Wang
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Cliff Morgan
- Department of Critical Care and Anaesthesia, Royal Brompton Hospital, London, UK
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, University of Lyon, Lyon, France
| | - Cormac McCarthy
- Department of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
X-linked Hyper IgM Syndrome Presenting as Pulmonary Alveolar Proteinosis. J Clin Immunol 2016; 36:564-70. [PMID: 27324886 DOI: 10.1007/s10875-016-0307-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE X-linked hyper IgM syndrome (XHIGM) is a combined immunodeficiency caused by mutations in the CD40 ligand (CD40L) gene that typically results in decreased or absent CD40L expression on activated T cells, leading to defective class switching and somatic hypermutation. We describe an infant who presented with respiratory failure due to pulmonary alveolar proteinosis (PAP) with a novel damaging missense mutation in the CD40L gene. METHODS Whole exome sequencing (WES) was used to identify a mutation in the CD40L gene. CD40L expression and function were determined by flow cytometry. RESULTS A 5-month-old previously-healthy male presented with respiratory failure and diffuse pulmonary ground glass opacities on CT scan of the chest. Laboratory evaluation revealed an undetectable IgG, normal IgA, and elevated IgM. A bronchoalveolar lavage demonstrated pulmonary alveolar proteinosis. WES demonstrated a c.608G > C mutation in the CD40L gene resulting in p.R203T. Flow cytometry demonstrated normal CD40L expression on activated T cells but absent binding of CD40-Ig to CD40L on activated patient T cells. CONCLUSIONS The clinical manifestations of XHIGM in our patient had several unique features, including the presentation with PAP, normal serum IgA, and expression of non-functional CD40L on activated T cells. To our knowledge, this is the first published case of PAP in a patient with XHIGM.
Collapse
|
7
|
Papiris SA, Tsirigotis P, Kolilekas L, Papadaki G, Papaioannou AI, Triantafillidou C, Papaporfyriou A, Karakatsani A, Kagouridis K, Griese M, Manali ED. Pulmonary alveolar proteinosis: time to shift? Expert Rev Respir Med 2015; 9:337-49. [DOI: 10.1586/17476348.2015.1035259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Raj D, Bhutia TD, Mathur S, Kabra SK, Lodha R. Pulmonary alveolar proteinosis secondary to Pneumocystis jiroveci infection in an infant with common variable immunodeficiency. Indian J Pediatr 2014; 81:929-31. [PMID: 23645284 DOI: 10.1007/s12098-013-1027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/25/2013] [Indexed: 11/26/2022]
Abstract
The authors report an infant with common variable immunodeficiency (CVID) with Pneumocystis pneumonia who developed secondary pulmonary alveolar proteinosis (PAP). This is the youngest infant reported to develop PAP secondary to Pneumocystis infection in an immunocompromised state. He was effectively managed with anti-microbials, frequent lung toilet, optimized mechanical ventilation, and supportive care.
Collapse
Affiliation(s)
- Dinesh Raj
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | | | | | | | |
Collapse
|
9
|
Cancrini C, Scarselli A, Scaramuzza S, Chiriaco M, Di Cesare S, Di Matteo G, Romiti ML, Palma P, De Felice L, Palumbo G, Pinto RM, De Vito R, Racioppi L, Livadiotti S, Fischer A, Rossi P, Caniglia M, Aiuti A. Early-onset monocyte-B-natural killer-dendritic cells' deficiency successfully treated with hematopoietic stem cell transplantation. J Allergy Clin Immunol 2011; 128:897-900.e1. [PMID: 21868074 DOI: 10.1016/j.jaci.2011.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 11/29/2022]
|
10
|
Pulmonary alveolar proteinosis as an unusual pattern of lung involvement in Sjögren syndrome. Rheumatol Int 2011; 32:2945-8. [DOI: 10.1007/s00296-011-2001-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
|
11
|
Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol 2010; 135:223-35. [PMID: 20338813 DOI: 10.1016/j.clim.2010.02.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 01/12/2023]
Abstract
Pulmonary alveolar proteinosis (PAP) comprises a heterogenous group of diseases characterized by abnormal surfactant accumulation resulting in respiratory insufficiency, and defects in alveolar macrophage- and neutrophil-mediated host defense. Basic, clinical and translational research over the past two decades have raised PAP from obscurity, identifying the molecular pathogenesis in over 90% of cases as a spectrum of diseases involving the disruption of GM-CSF signaling. Autoimmune PAP represents the vast majority of cases and is caused by neutralizing GM-CSF autoantibodies. Genetic mutations that disrupt GM-CSF receptor signaling comprise a rare form of hereditary PAP. In both autoimmune and hereditary PAP, loss of GM-CSF signaling blocks the terminal differentiation of alveolar macrophages in the lungs impairing the ability of alveolar macrophages to catabolize surfactant and to perform many host defense functions. Secondary PAP occurs in a variety of clinical diseases that presumedly cause the syndrome by reducing the numbers or functions of alveolar macrophages, thereby impairing alveolar macrophage-mediated pulmonary surfactant clearance. A similar phenotype occurs in mice deficient in the production of GM-CSF or GM-CSF receptors. PAP and related research has uncovered a critical and emerging role for GM-CSF in the regulation of pulmonary surfactant homeostasis, lung host defense, and systemic immunity.
Collapse
Affiliation(s)
- Brenna Carey
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Division of Critical Care, Pulmonary and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
12
|
Douda DN, Farmakovski N, Dell S, Grasemann H, Palaniyar N. SP-D counteracts GM-CSF-mediated increase of granuloma formation by alveolar macrophages in lysinuric protein intolerance. Orphanet J Rare Dis 2009; 4:29. [PMID: 20030831 PMCID: PMC2807424 DOI: 10.1186/1750-1172-4-29] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/23/2009] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a syndrome with multiple etiologies and is often deadly in lysinuric protein intolerance (LPI). At present, PAP is treated by whole lung lavage or with granulocyte/monocyte colony stimulating factor (GM-CSF); however, the effectiveness of GM-CSF in treating LPI associated PAP is uncertain. We hypothesized that GM-CSF and surfactant protein D (SP-D) would enhance the clearance of proteins and dying cells that are typically present in the airways of PAP lungs. METHODS Cells and cell-free supernatant of therapeutic bronchoalveolar lavage fluid (BALF) of a two-year-old patient with LPI were isolated on multiple occasions. Diagnostic BALF samples from an age-matched patient with bronchitis or adult PAP patients were used as controls. SP-D and total protein content of the supernatants were determined by BCA assays and Western blots, respectively. Cholesterol content was determined by a calorimetic assay or Oil Red O staining of cytospin preparations. The cells and surfactant lipids were also analyzed by transmission electron microscopy. Uptake of Alexa-647 conjugated BSA and DiI-labelled apoptotic Jurkat T-cells by BAL cells were studied separately in the presence or absence of SP-D (1 microg/ml) and/or GM-CSF (10 ng/ml), ex vivo. Specimens were analyzed by light and fluorescence microscopy. RESULTS Here we show that large amounts of cholesterol, and large numbers of cholesterol crystals, dying cells, and lipid-laden foamy alveolar macrophages were present in the airways of the LPI patient. Although SP-D is present, its bioavailability is low in the airways. SP-D was partially degraded and entrapped in the unusual surfactant lipid tubules with circular lattice, in vivo. We also show that supplementing SP-D and GM-CSF increases the uptake of protein and dying cells by healthy LPI alveolar macrophages, ex vivo. Serendipitously, we found that these cells spontaneously generated granulomas, ex vivo, and GM-CSF treatment drastically increased the number of granulomas whereas SP-D treatment counteracted the adverse effect of GM-CSF. CONCLUSIONS We propose that increased GM-CSF and decreased bioavailability of SP-D may promote granuloma formation in LPI, and GM-CSF may not be suitable for treating PAP in LPI. To improve the lung condition of LPI patients with PAP, it would be useful to explore alternative therapies for increasing dead cell clearance while decreasing cholesterol content in the airways.
Collapse
Affiliation(s)
- David N Douda
- Lung Innate Immunity Research, Program in Physiology and Experimental Medicine, Research Institute, The Hospital For Sick Children, Toronto, Ontario, M5G 1X8, Canada.
| | | | | | | | | |
Collapse
|
13
|
Current World Literature. Curr Opin Pulm Med 2009; 15:521-7. [DOI: 10.1097/mcp.0b013e3283304c7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
|