1
|
Fontecave-Jallon J, Flénet T, Eynard C, Guméry PY, Boucher F, Tanguy S. Inductive plethysmography in rats: towards a new standard for longitudinal non-invasive cardiac output monitoring in preclinical studies. Physiol Meas 2018; 39:095006. [DOI: 10.1088/1361-6579/aad7ec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Flénet T, Fontecave-Jallon J, Guméry PY, Eynard C, Boucher F, Baconnier P, Tanguy S. High-resolution respiratory inductive plethysmography in rats: validation in anesthetized conditions. Physiol Meas 2017; 38:1362-1372. [PMID: 28301327 DOI: 10.1088/1361-6579/aa6737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Respiratory monitoring is often required in experimental physiological and pharmacological studies in rodents. Currently, the mostly used techniques are direct measurement of airflow on intubated animals and whole body plethysmography. OBJECTIVE Although the reliability of these methods has been broadly demonstrated, they also have several drawbacks such as invasiveness, high cost of use or confinement of the animals. Respiratory inductive plethysmography (RIP) is a non-invasive technique already used in medium-sized mammals that has not yet been evaluated in small rodents. The implementation of inductive plethysmography in rats represents an instrumental challenge because of the small inductances that are expected. APPROACH A rodent-specific RIP apparatus has been developed and compared to direct airflow measurement provided by a pneumotachograph (PNT) considered as the invasive gold standard for respiratory monitoring. The experiments were carried out on anesthetized rats artificially ventilated at different levels of tidal volumes (V T) covering the whole physiological range. MAIN RESULTS Based on the Euclidian distance between signals, this study shows that after calibration, signals from RIP fit at 93% with PNT values. The Bland and Altman plot evidences differences between RIP and PNT lower than 20% and the values obtained are highly correlated (R = 0.98, p < 0.001). SIGNIFICANCE This study demonstrates that it is possible to design RIP systems suitable for measurement of tidal volumes and airflow in anesthetized rats. Further studies will now be focused on the validation in extended physiological conditions.
Collapse
Affiliation(s)
- T Flénet
- Université Grenoble Alpes, CNRS, TIMC-IMAG Laboratory UMR 5525, PRETA team, F-38041 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
3
|
Milesi I, Tingay DG, Zannin E, Bianco F, Tagliabue P, Mosca F, Lavizzari A, Ventura ML, Zonneveld CE, Perkins EJ, Black D, Sourial M, Dellacá RL. Intratracheal atomized surfactant provides similar outcomes as bolus surfactant in preterm lambs with respiratory distress syndrome. Pediatr Res 2016; 80:92-100. [PMID: 26954481 DOI: 10.1038/pr.2016.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/21/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Aerosolization of exogenous surfactant remains a challenge. This study is aimed to evaluate the efficacy of atomized poractant alfa (Curosurf) administered with a novel atomizer in preterm lambs with respiratory distress syndrome. METHODS Twenty anaesthetized lambs, 127 ± 1 d gestational age, (mean ± SD) were instrumented before birth and randomized to receive either (i) positive pressure ventilation without surfactant (Control group), (ii) 200 mg/kg of bolus instilled surfactant (Bolus group) at 10 min of life or (iii) 200 mg/kg of atomized surfactant (Atomizer group) over 60 min from 10 min of life. All lambs were ventilated for 180 min with a standardized protocol. Lung mechanics, regional lung compliance (electrical impedance tomography), and carotid blood flow (CBF) were measured with arterial blood gas analysis. RESULTS Dynamic compliance and oxygenation responses were similar in the Bolus and Atomizer groups, and both better than Control by 180 min (all P < 0.05; two-way ANOVA). Both surfactant groups demonstrated more homogeneous regional lung compliance throughout the study period. There were no differences in CBFConclusion:In a preterm lamb model, atomized surfactant resulted in similar gas exchange and mechanics as bolus administration. This study suggests evaluation of supraglottic atomization with this system when noninvasive support is warranted.
Collapse
Affiliation(s)
- Ilaria Milesi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milano, Italy
| | - David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia.,Neonatology, The Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Emanuela Zannin
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milano, Italy
| | - Federico Bianco
- Research and Development Department, Chiesi Farmaceutici SpA, Parma, Italy
| | | | - Fabio Mosca
- NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano
| | - Anna Lavizzari
- NICU, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico-Università degli Studi di Milano
| | | | - C Elroy Zonneveld
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Elizabeth J Perkins
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Don Black
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Magdy Sourial
- Neonatal Research, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Raffaele L Dellacá
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milano, Italy
| |
Collapse
|
4
|
Abstract
Endotracheal suctioning is an essential intervention for the care of an intubated child and is one of the most commonly performed interventions in pediatric intensive care. Despite this, much of the research related to endotracheal suctioning is dated and the bulk of it conducted in preterm infants and adults. This paper will review research related to endotracheal suctioning that involves or relates to children in intensive care to provide a current review of the literature in this field. It will conclude with recommendations for practice where possible and identify areas for further research.
Collapse
Affiliation(s)
- Lyvonne N Tume
- Pediatric Intensive Care Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom.,The School of Health, University of Central Lancashire, Preston, United Kingdom
| | - Beverley Copnell
- School of Nursing and Midwifery, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This review article summarizes the recent advances in electrical impedance tomography (EIT) related to cardiopulmonary imaging and monitoring on the background of the 30-year development of this technology. RECENT FINDINGS EIT is expected to become a bedside tool for monitoring and guiding ventilator therapy. In this context, several studies applied EIT to determine spatial ventilation distribution during different ventilation modes and settings. EIT was increasingly combined with other signals, such as airway pressure, enabling the assessment of regional respiratory system mechanics. EIT was for the first time used prospectively to define ventilator settings in an experimental and a clinical study. Increased neonatal and paediatric use of EIT was noted. Only few studies focused on cardiac function and lung perfusion. Advanced radiological imaging techniques were applied to assess EIT performance in detecting regional lung ventilation. New approaches to improve the quality of thoracic EIT images were proposed. SUMMARY EIT is not routinely used in a clinical setting, but the interest in EIT is evident. The major task for EIT research is to provide the clinicians with guidelines how to conduct, analyse and interpret EIT examinations and combine them with other medical techniques so as to meaningfully impact the clinical decision-making.
Collapse
|
6
|
Tingay DG, Polglase GR, Bhatia R, Berry CA, Kopotic RJ, Kopotic CP, Song Y, Szyld E, Jobe AH, Pillow JJ. Pressure-limited sustained inflation vs. gradual tidal inflations for resuscitation in preterm lambs. J Appl Physiol (1985) 2015; 118:890-7. [PMID: 25635005 DOI: 10.1152/japplphysiol.00985.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/26/2015] [Indexed: 01/09/2023] Open
Abstract
Support of the mechanically complex preterm lung needs to facilitate aeration while avoiding ventilation heterogeneities: whether to achieve this gradually or quickly remains unclear. We compared the effect of gradual vs. constant tidal inflations and a pressure-limited sustained inflation (SI) at birth on gas exchange, lung mechanics, gravity-dependent lung volume distribution, and lung injury in 131-day gestation preterm lambs. Lambs were resuscitated with either 1) a 20-s, 40-cmH2O pressure-limited SI (PressSI), 2) a gradual increase in tidal volume (Vt) over 5-min from 3 ml/kg to 7 ml/kg (IncrVt), or 3) 7 ml/kg Vt from birth. All lambs were subsequently ventilated for 15 min with 7 ml/kg Vt with the same end-expiratory pressure. Lung mechanics, gas exchange and spatial distribution of end-expiratory volume (EEV), and tidal ventilation (electrical impedance tomography) were recorded regularly. At 15 min, early mRNA tissue markers of lung injury were assessed. The IncrVt group resulted in greater tissue hysteresivity at 5 min (P = 0.017; two-way ANOVA), higher alveolar-arterial oxygen difference from 10 min (P < 0.01), and least uniform gravity-dependent distribution of EEV. There were no other differences in lung mechanics between groups, and the PressSI and 7 ml/kg Vt groups behaved similarly throughout. EEV was more uniformly distributed, but Vt least so, in the PressSI group. There were no differences in mRNA markers of lung injury. A gradual increase in Vt from birth resulted in less recruitment of the gravity-dependent lung with worse oxygenation. There was no benefit of a SI at birth over mechanical ventilation with 7 ml/kg Vt.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Neonatal Research, The Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Risha Bhatia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Neonatology, The Royal Children's Hospital, Melbourne, Victoria, Australia; Neonatal Research, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Clare A Berry
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | | | | | - Yong Song
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Edgardo Szyld
- Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina; Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Alan H Jobe
- Cincinnati Children's Hospital Medical Centre, Cincinnati, Ohio
| | - J Jane Pillow
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia;
| |
Collapse
|
7
|
Hough JL, Shearman AD, Liley H, Grant CA, Schibler A. Lung recruitment and endotracheal suction in ventilated preterm infants measured with electrical impedance tomography. J Paediatr Child Health 2014; 50:884-9. [PMID: 24965750 DOI: 10.1111/jpc.12661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 11/30/2022]
Abstract
AIMS Although suctioning is a standard airway maintenance procedure, there are significant associated risks, such as loss of lung volume due to high negative suction pressures. This study aims to assess the extent and duration of change in end-expiratory level (EEL) resulting from endotracheal tube (ETT) suction and to examine the relationship between EEL and regional lung ventilation in ventilated preterm infants with respiratory distress syndrome. METHODS A prospective observational clinical study of the effect of ETT suction on 20 non-muscle-relaxed preterm infants with respiratory distress syndrome (RDS) on conventional mechanical ventilation was conducted in a neonatal intensive care unit. Ventilation distribution was measured with regional impedance amplitudes and EEL using electrical impedance tomography. RESULTS ETT suction resulted in a significant increase in EEL post-suction (P < 0.01). Regionally, anterior EEL decreased and posterior EEL increased post-suction, suggesting heterogeneity. Tidal volume was significantly lower in volume-guarantee ventilation compared with pressure-controlled ventilation (P = 0.04). CONCLUSIONS ETT suction in non-muscle-relaxed and ventilated preterm infants with RDS results in significant lung volume increase that is maintained for at least 90 min. Regional differences in distribution of ventilation with ETT suction suggest that the behaviour of the lung is heterogeneous in nature.
Collapse
Affiliation(s)
- Judith L Hough
- Critical Care of the Newborn Program, Mater Research, Brisbane, Queensland, Australia; School of Physiotherapy, Australian Catholic University, Brisbane, Queensland, Australia; Paediatric Critical Care Research Group, Paediatric Intensive Care Unit, Mater Children's Hospital, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
8
|
Polglase GR, Tingay DG, Bhatia R, Berry CA, Kopotic RJ, Kopotic CP, Song Y, Szyld E, Jobe AH, Pillow JJ. Pressure- versus volume-limited sustained inflations at resuscitation of premature newborn lambs. BMC Pediatr 2014; 14:43. [PMID: 24529320 PMCID: PMC3937019 DOI: 10.1186/1471-2431-14-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sustained inflations (SI) are advocated for the rapid establishment of FRC after birth in preterm and term infants requiring resuscitation. However, the most appropriate way to deliver a SI is poorly understood. We investigated whether a volume-limited SI improved the establishment of FRC and ventilation homogeneity and reduced lung inflammation/injury compared to a pressure-limited SI. METHODS 131 d gestation lambs were resuscitated with either: i) pressure-limited SI (PressSI: 0-40 cmH2O over 5 s, maintained until 20 s); or ii) volume-limited SI (VolSI: 0-15 mL/kg over 5 s, maintained until 20 s). Following the SI, all lambs were ventilated using volume-controlled ventilation (7 mL/kg tidal volume) for 15 min. Lung mechanics, regional ventilation distribution (electrical impedance tomography), cerebral tissue oxygenation index (near infrared spectroscopy), arterial pressures and blood gas values were recorded regularly. Pressure-volume curves were performed in-situ post-mortem and early markers of lung injury were assessed. RESULTS Compared to a pressure-limited SI, a volume-limited SI had increased pressure variability but reduced volume variability. Each SI strategy achieved similar end-inflation lung volumes and regional ventilation homogeneity. Volume-limited SI increased heart-rate and arterial pressure faster than pressure-limited SI lambs, but no differences were observed after 30 s. Volume-limited SI had increased arterial-alveolar oxygen difference due to higher FiO2 at 15 min (p = 0.01 and p = 0.02 respectively). No other inter-group differences in arterial or cerebral oxygenation, blood pressures or early markers of lung injury were evident. CONCLUSION With the exception of inferior oxygenation, a sustained inflation targeting delivery to preterm lambs of 15 mL/kg volume by 5 s did not influence physiological variables or early markers of lung inflammation and injury at 15 min compared to a standard pressure-limited sustained inflation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jane J Pillow
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia.
| |
Collapse
|
9
|
Effect of sustained inflation vs. stepwise PEEP strategy at birth on gas exchange and lung mechanics in preterm lambs. Pediatr Res 2014; 75:288-94. [PMID: 24257321 DOI: 10.1038/pr.2013.218] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/27/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Sustained inflation (SI) at birth facilitates establishment of functional residual capacity (FRC) in the preterm lung, but the ideal lung recruitment strategy is unclear. We have compared the effect of SI and a stepwise positive end-expiratory pressure (PEEP; SEP) strategy in a preterm model. METHODS 127 d gestation lambs received either 20-s SI (n = 9) or 2 cmH2O stepwise PEEP increases to 20 cmH2O every 10 inflations, and then decreases to 6 cmH2O (n = 10). Ventilation continued for 70 min, with surfactant administered at 10 min. Alveolar-arterial oxygen gradient (AaDO2), compliance (C(dyn)), end-expiratory thoracic volume (EEVRIP; respiratory inductive plethysmography), and EEV and C(dyn) in the gravity-dependent and nondependent hemithoraces (electrical impedance tomography) were measured throughout. Early mRNA markers of lung injury were analyzed using quantitative real-time PCR. RESULTS From 15 min of life, AaDO2 was lower in SEP group (P < 0.005; two-way ANOVA). SEP resulted in higher and more homogeneous C(dyn) (P < 0.0001). Mean (SD) EEVRIP at 5 min was 18 (9) ml/kg and 6 (5) ml/kg following SEP and SI, respectively (P = 0.021; Bonferroni posttest); this difference was due to a greater nondependent hemithorax EEV. There was no difference in markers of lung injury. CONCLUSION An SEP at birth improved gas exchange, lung mechanics, and EEV, without increasing lung injury, compared to the SI strategy used.
Collapse
|
10
|
Tingay DG, Wallace MJ, Bhatia R, Schmölzer GM, Zahra VA, Dolan MJ, Hooper SB, Davis PG. Surfactant before the first inflation at birth improves spatial distribution of ventilation and reduces lung injury in preterm lambs. J Appl Physiol (1985) 2013; 116:251-8. [PMID: 24356523 DOI: 10.1152/japplphysiol.01142.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interrelationship between the role of surfactant and a sustained inflation (SI) to aid ex utero transition of the preterm lung is unknown. We compared the effect of surfactant administered before and after an initial SI on gas exchange, lung mechanics, spatial distribution of ventilation, and lung injury in preterm lambs. Gestational-age lambs (127 days; 9 per group) received 100 mg/kg of a surfactant (Curosurf) either prior (Surf+SI) or 10 min after birth (SI+Surf). At birth, a 20-s, 35 cmH2O SI was applied, followed by 70 min of positive pressure ventilation. Oxygenation, carbon dioxide removal, respiratory system compliance, end-expiratory thoracic volume (via respiratory inductive plethysmography), and distribution of end-expiratory volume and ventilation (via electrical impedance tomography) were measured throughout. Early markers of lung injury were analyzed using quantitative RT-PCR. During the first 15 min, oxygenation, carbon dioxide removal, and compliance were better in the Surf+SI group (all P < 0.05). End-expiratory volume on completion of the sustained inflation was higher in the Surf+SI group than the SI+Surf group; 11 ± 1 ml/kg vs. 7 ± 1 ml/kg (mean ± SE) (P = 0.043; t-test), but was not different at later time points. Although neither achieved homogenous aeration, spatial ventilation was more uniform in the Surf+SI group throughout; 50.1 ± 10.9% of total ventilation in the left hemithorax at 70 min vs. 42.6 ± 11.1% in the SI+Surf group. Surf+SI resulted in lower mRNA levels of CYR61 and EGR1 compared with SI+Surf (P < 0.001, one-way ANOVA). Surfactant status of the fetal preterm lung at birth influences the mechanical and injury response to a sustained inflation and ventilation by changing surface tension of the air/fluid interface.
Collapse
Affiliation(s)
- David G Tingay
- Neonatal Research, Murdoch Childrens Research Institute, Parkville, Australia
| | | | | | | | | | | | | | | |
Collapse
|