1
|
Garegnani L, Hyland M, Roson Rodriguez P, Escobar Liquitay CM, Franco JV. Antioxidants to prevent respiratory decline in people with Duchenne muscular dystrophy and progressive respiratory decline. Cochrane Database Syst Rev 2021; 12:CD013720. [PMID: 34850383 PMCID: PMC8632644 DOI: 10.1002/14651858.cd013720.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterised by progressive muscle weakness beginning in early childhood. Respiratory failure and weak cough develop in all patients as a consequence of muscle weakness leading to a risk of atelectasis, pneumonia, or the need for ventilatory support. There is no curative treatment for DMD. Corticosteroids are the only pharmacological intervention proven to delay the onset and progression of muscle weakness and thus respiratory decline in DMD. Antioxidant treatment has been proposed to try to reduce muscle weakness in general, and respiratory decline in particular. OBJECTIVES: To assess the effects of antioxidant agents on preventing respiratory decline in people with Duchenne muscular dystrophy during the respiratory decline phase of the condition. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and two trials registers to 23 March 2021, together with reference checking, citation searching, and contact with study authors to identify additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that met our inclusion criteria. We included male patients with a diagnosis of DMD who had respiratory decline evidenced by a forced vital capacity (FVC%) less than 80% but greater than 30% of predicted values, receiving any antioxidant agent compared with other therapies for the management of DMD or placebo. DATA COLLECTION AND ANALYSIS: Two review authors screened studies for eligibility, assessed risk of bias of studies, and extracted data. We used standard methods expected by Cochrane. We assessed the certainty of the evidence using the GRADE approach. The primary outcomes were FVC and hospitalisation due to respiratory infections. Secondary outcomes were quality of life, adverse events, change in muscle function, forced expiratory volume in the first second (FEV1), and peak expiratory flow (PEF). MAIN RESULTS: We included one study with 66 participants who were not co-treated with corticosteroids, which was the only study to contribute data to our main analysis. We also included a study that enrolled 255 participants treated with corticosteroids, which was only available as a press release without numerical results. The studies were parallel-group RCTs that assessed the effect of idebenone on respiratory function compared to placebo. The trial that contributed numerical data included patients with a mean (standard deviation) age of 14.3 (2.7) years at the time of inclusion, with a documented diagnosis of DMD or severe dystrophinopathy with clinical features consistent with typical DMD. The overall risk of bias across most outcomes was similar and judged as 'low'. Idebenone may result in a slightly less of a decline in FVC from baseline to one year compared to placebo (mean difference (MD) 3.28%, 95% confidence interval (CI) -0.41 to 6.97; 64 participants; low-certainty evidence), and probably has little or no effect on change in quality of life (MD -3.80, 95% CI -10.09 to 2.49; 63 participants; moderate-certainty evidence) (Pediatric Quality of Life Inventory (PedsQL), range 0 to 100, 0 = worst, 100 = best quality of life). As a related but secondary outcome, idebenone may result in less of a decline from baseline in FEV1 (MD 8.28%, 95% CI 0.89 to 15.67; 53 participants) and PEF (MD 6.27%, 95% CI 0.61 to 11.93; 1 trial, 64 participants) compared to placebo. Idebenone was associated with fewer serious adverse events (RR 0.42, 95% CI 0.09 to 2.04; 66 participants; low-certainty evidence) and little to no difference in non-serious adverse events (RR 1.00, 95% CI 0.88 to 1.13; 66 participants; low-certainty evidence) compared to placebo. Idebenone may result in little to no difference in change in arm muscle function (MD -2.45 N, 95% CI -8.60 to 3.70 for elbow flexors and MD -1.06 N, 95% CI -6.77 to 4.65 for elbow extensors; both 52 participants) compared to placebo. We found no studies evaluating the outcome hospitalisation due to respiratory infection. The second trial, involving 255 participants, for which data were available only as a press release without numerical data, was prematurely discontinued due to futility after an interim efficacy analysis based on FVC. There were no safety concerns. The certainty of the evidence was low for most outcomes due to imprecision and publication bias (the lack of a full report of the larger trial, which was prematurely terminated). AUTHORS' CONCLUSIONS Idebenone is the only antioxidant agent tested in RCTs for preventing respiratory decline in people with DMD for which evidence was available for assessment. Idebenone may result in slightly less of a decline in FVC and less of a decline in FEV1 and PEF, but probably has little to no measurable effect on change in quality of life. Idebenone is associated with fewer serious adverse events than placebo. Idebenone may result in little to no difference in change in muscle function. Discontinuation due to the futility of the SIDEROS trial and its expanded access programmes may indicate that idebenone research in this condition is no longer needed, but we await the trial data. Further research is needed to establish the effect of different antioxidant agents on preventing respiratory decline in people with DMD during the respiratory decline phase of the condition.
Collapse
Affiliation(s)
- Luis Garegnani
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martin Hyland
- Paediatric Neurology Division - Paediatrics Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Roson Rodriguez
- Research Department, Instituto Universitario Hospital Italiano, Buenos Aires, Argentina
| | | | - Juan Va Franco
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Igelström E, Campbell M, Craig P, Katikireddi SV. Cochrane's risk of bias tool for non-randomized studies (ROBINS-I) is frequently misapplied: A methodological systematic review. J Clin Epidemiol 2021; 140:22-32. [PMID: 34437948 PMCID: PMC8809341 DOI: 10.1016/j.jclinepi.2021.08.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We aimed to review how 'Risk of Bias In Non-randomized Studies-of Interventions' (ROBINS-I), a Cochrane risk of bias assessment tool, has been used in recent systematic reviews. STUDY DESIGN AND SETTING Database and citation searches were conducted in March 2020 to identify recently published reviews using ROBINS-I. Reported ROBINS-I assessments and data on how ROBINS-I was used were extracted from each review. Methodological quality of reviews was assessed using AMSTAR 2 ('A MeaSurement Tool to Assess systematic Reviews'). RESULTS Of 181 hits, 124 reviews were included. Risk of bias was serious/critical in 54% of assessments on average, most commonly due to confounding. Quality of reviews was mostly low, and modifications and incorrect use of ROBINS-I were common, with 20% reviews modifying the rating scale, 20% understating overall risk of bias, and 19% including critical-risk of bias studies in evidence synthesis. Poorly conducted reviews were more likely to report low/moderate risk of bias (predicted probability 57% [95% CI: 47-67] in critically low-quality reviews, 31% [19-46] in high/moderate-quality reviews). CONCLUSION Low-quality reviews frequently apply ROBINS-I incorrectly, and may thus inappropriately include or give too much weight to uncertain evidence. Readers should be aware that such problems can lead to incorrect conclusions in reviews.
Collapse
Affiliation(s)
- Erik Igelström
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Berkeley Square 99 Berkeley Street, Glasgow, G3 7HR.
| | - Mhairi Campbell
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Berkeley Square 99 Berkeley Street, Glasgow, G3 7HR
| | - Peter Craig
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Berkeley Square 99 Berkeley Street, Glasgow, G3 7HR
| | - Srinivasa Vittal Katikireddi
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Berkeley Square 99 Berkeley Street, Glasgow, G3 7HR
| |
Collapse
|
3
|
Garegnani L, Hyland M, Roson Rodriguez P, Escobar Liquitay CME, Franco JV. Antioxidants to prevent respiratory decline in people with Duchenne muscular dystrophy and progressive respiratory decline. Cochrane Database Syst Rev 2021; 11:CD013720. [PMID: 34748221 PMCID: PMC8574769 DOI: 10.1002/14651858.cd013720.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterised by progressive muscle weakness beginning in early childhood. Respiratory failure and weak cough develop in all patients as a consequence of muscle weakness leading to a risk of atelectasis, pneumonia, or the need for ventilatory support. There is no curative treatment for DMD. Corticosteroids are the only pharmacological intervention proven to delay the onset and progression of muscle weakness and thus respiratory decline in DMD. Antioxidant treatment has been proposed to try to reduce muscle weakness in general, and respiratory decline in particular. OBJECTIVES: To assess the effects of antioxidant agents on preventing respiratory decline in people with Duchenne muscular dystrophy during the respiratory decline phase of the condition. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and two trials registers to 23 March 2021, together with reference checking, citation searching, and contact with study authors to identify additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that met our inclusion criteria. We included male patients with a diagnosis of DMD who had respiratory decline evidenced by a forced vital capacity (FVC%) less than 80% but greater than 30% of predicted values, receiving any antioxidant agent compared with other therapies for the management of DMD or placebo. DATA COLLECTION AND ANALYSIS: Two review authors screened studies for eligibility, assessed risk of bias of studies, and extracted data. We used standard methods expected by Cochrane. We assessed the certainty of the evidence using the GRADE approach. The primary outcomes were FVC and hospitalisation due to respiratory infections. Secondary outcomes were quality of life, adverse events, change in muscle function, forced expiratory volume in the first second (FEV1), and peak expiratory flow (PEF). MAIN RESULTS: We included one study with 66 participants who were not co-treated with corticosteroids, which was the only study to contribute data to our main analysis. We also included a study that enrolled 255 participants treated with corticosteroids, which was only available as a press release without numerical results. The studies were parallel-group RCTs that assessed the effect of idebenone on respiratory function compared to placebo. The trial that contributed numerical data included patients with a mean (standard deviation) age of 14.3 (2.7) years at the time of inclusion, with a documented diagnosis of DMD or severe dystrophinopathy with clinical features consistent with typical DMD. The overall risk of bias across most outcomes was similar and judged as 'low'. Idebenone may result in a slightly less of a decline in FVC from baseline to one year compared to placebo (mean difference (MD) 3.28%, 95% confidence interval (CI) -0.41 to 6.97; 64 participants; low-certainty evidence), and probably has little or no effect on change in quality of life (MD -3.80, 95% CI -10.09 to 2.49; 63 participants; moderate-certainty evidence) (Pediatric Quality of Life Inventory (PedsQL), range 0 to 100, 0 = worst, 100 = best quality of life). As a related but secondary outcome, idebenone may result in less of a decline from baseline in FEV1 (MD 8.28%, 95% CI 0.89 to 15.67; 53 participants) and PEF (MD 6.27%, 95% CI 0.61 to 11.93; 1 trial, 64 participants) compared to placebo. Idebenone was associated with fewer serious adverse events (RR 0.42, 95% CI 0.09 to 2.04; 66 participants; low-certainty evidence) and little to no difference in non-serious adverse events (RR 1.00, 95% CI 0.88 to 1.13; 66 participants; low-certainty evidence) compared to placebo. Idebenone may result in little to no difference in change in arm muscle function (MD -2.45 N, 95% CI -8.60 to 3.70 for elbow flexors and MD -1.06 N, 95% CI -6.77 to 4.65 for elbow extensors; both 52 participants) compared to placebo. We found no studies evaluating the outcome hospitalisation due to respiratory infection. The second trial, involving 255 participants, for which data were available only as a press release without numerical data, was prematurely discontinued due to futility after an interim efficacy analysis based on FVC. There were no safety concerns. The certainty of the evidence was low for most outcomes due to imprecision and publication bias (the lack of a full report of the larger trial, which was prematurely terminated). AUTHORS' CONCLUSIONS Idebenone is the only antioxidant agent tested in RCTs for preventing respiratory decline in people with DMD for which evidence was available for assessment. Idebenone may result in slightly less of a decline in FVC and less of a decline in FEV1 and PEF, but probably has little to no measurable effect on change in quality of life. Idebenone is associated with fewer serious adverse events than placebo. Idebenone may result in little to no difference in change in muscle function. Discontinuation due to the futility of the SIDEROS trial and its expanded access programmes may indicate that idebenone research in this condition is no longer needed, but we await the trial data. Further research is needed to establish the effect of different antioxidant agents on preventing respiratory decline in people with DMD during the respiratory decline phase of the condition.
Collapse
Affiliation(s)
- Luis Garegnani
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martin Hyland
- Paediatric Neurology Division - Paediatrics Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Roson Rodriguez
- Research Department, Instituto Universitario Hospital Italiano, Buenos Aires, Argentina
| | | | - Juan Va Franco
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Brogna C, Lucibello S, Coratti G, Vita G, Sansone VA, Messina S, Albamonte E, Salmin F, Ferrantini G, Pede E, Consulo C, Fanelli L, Forcina N, Norcia G, Pane M, Mercuri E. Respiratory function and therapeutic expectations in DMD: families experience and perspective. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:121-129. [PMID: 33305168 PMCID: PMC7711327 DOI: 10.36185/2532-1900-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/01/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of this study was to use a structured questionnaire in a large cohort of Duchenne Muscular Dystrophy (DMD) patients to assess caregivers and patients views on respiratory function and to establish if their responses were related to the patients' age or level of functional impairment. METHODS Questionnaires were administered to caregivers in 205 DMD patients of age between 3 and 36 years (115 ambulant, 90 non-ambulant), and to 64 DMD patients (3 ambulant, 61 non-ambulant) older than 18 years, subdivided into groups according to age, FVC, ambulatory and ventilatory status. RESULTS Some differences were found in relation to FVC % values (p = 0.014), ambulatory (p = 0.043) and ventilatory status (p = 0.014). Nearly half of the caregivers expected deterioration over the next years, with the perspective of deterioration more often reported by caregivers of non-ambulant (p = 0.018) and ventilated patients (p = 0.004). Caregivers appeared to be aware of the relevance of respiratory function on quality of life (84%) showing willingness to enter possible clinical trials if these were aiming to stabilize the progression of respiratory function with a very high number of positive responses across the spectrum of age, FVC, ambulatory and ventilatory status. The boys older than 18 years showed similar results. CONCLUSIONS Our study showed that the concern for respiratory function increases with age and with the reduction of FVC or the need for ventilation, but the need for intervention was acknowledged across the whole spectrum of age and functional status.
Collapse
Affiliation(s)
- Claudia Brogna
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy, Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Simona Lucibello
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy, Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giorgia Coratti
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy, Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Vita
- Nemo SUD Clinical Centre, University Hospital “G. Martino”, Messina, Italy
| | - Valeria A. Sansone
- The NEMO Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | - Sonia Messina
- Nemo SUD Clinical Centre, University Hospital “G. Martino”, Messina, Italy, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emilio Albamonte
- The NEMO Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | - Francesca Salmin
- The NEMO Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | - Gloria Ferrantini
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy, Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Elisa Pede
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy, Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Chiara Consulo
- Nemo SUD Clinical Centre, University Hospital “G. Martino”, Messina, Italy
| | - Lavinia Fanelli
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nicola Forcina
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giulia Norcia
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marika Pane
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy, Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Eugenio Mercuri
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy, Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy,Correspondence Eugenio Mercuri Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy; Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Gemelli 00168, Rome, Italy. Tel.: +39 06 30155340. Fax: +39 06 30154363. E-mail:
| |
Collapse
|