1
|
Pestana RMC, Silvino JPP, Oliveira AND, Soares CE, Sabino ADP, Simões R, Gomes KB. New Cardiovascular Biomarkers in Breast Cancer Patients Undergoing Doxorubicin-Based Chemotherapy. Arq Bras Cardiol 2023; 120:e20230167. [PMID: 38232245 DOI: 10.36660/abc.20230167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Central Illustration : New Cardiovascular Biomarkers in Breast Cancer Patients Undergoing Doxorubicin-Based Chemotherapy. Cardiovascular diseases (CVDs) are relevant to the management of breast cancer treatment since a substantial number of patients develop these complications after chemotherapy. OBJECTIVE This study aims to evaluate new cardiovascular biomarkers, namely CXCL-16 (C-X-C motif ligand 16), FABP3 (fatty acid binding protein 3), FABP4 (fatty acid binding protein 4), LIGHT (tumor necrosis factor superfamily member 14/TNFS14), GDF-15 (Growth/differentiation factor 15), sCD4 (soluble form of CD14), and ucMGP (uncarboxylated Matrix Gla-Protein) in breast cancer patients treated with doxorubicin (DOXO). METHODS This case-control study was conducted in an oncology clinic that included 34 women diagnosed with breast cancer and chemotherapy with DOXO and 34 control women without cancer and CVD. The markers were determined immediately after the last cycle of chemotherapy. The statistical significance level adopted was 5%. RESULTS The breast cancer group presented higher levels of GDF-15 (p<0.001), while control subjects had higher levels of FABP3 (p=0.038), FABP4 (p=0003), sCD14, and ucMGP (p<0.001 for both). Positive correlations were observed between FABPs and BMI in the cancer group. CONCLUSION GDF15 is an emerging biomarker with potential clinical applicability in this scenario. FABPs are proteins related to adiposity, which are potentially involved in breast cancer biology. sCD14 and ucMGP engage in inflammatory and vascular calcification. The evaluation of these novel cardiovascular biomarkers could be useful in the management of breast cancer chemotherapy with DOXO.
Collapse
Affiliation(s)
| | | | | | - Cintia Esteves Soares
- Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte , MG - Brasil
| | | | - Ricardo Simões
- Instituto de Hipertensão , Belo Horizonte , MG - Brasil
- Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte , MG - Brasil
- Faculdade de Farmácia - Universidade Federal de Minas Gerais , Belo Horizonte , MG - Brasil
| | - Karina Braga Gomes
- Faculdade de Medicina - Universidade Federal de Minas Gerais , Belo Horizonte , MG - Brasil
- Faculdade de Farmácia - Universidade Federal de Minas Gerais , Belo Horizonte , MG - Brasil
| |
Collapse
|
2
|
The Role of Fatty Acid Binding Protein 3 in Cardiovascular Diseases. Biomedicines 2022; 10:biomedicines10092283. [PMID: 36140383 PMCID: PMC9496114 DOI: 10.3390/biomedicines10092283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are proteins found in the cytosol that contribute to disorders related to the cardiovascular system, including atherosclerosis and metabolic syndrome. Functionally, FABPs serve as intracellular lipid chaperones, interacting with hydrophobic ligands and mediating their transportation to sites of lipid metabolism. To date, nine unique members of the FABP family (FABP 1–9) have been identified and classified according to the tissue in which they are most highly expressed. In the literature, FABP3 has been shown to be a promising clinical biomarker for coronary and peripheral artery disease. Given the rising incidence of cardiovascular disease and its associated morbidity/mortality, identifying biomarkers for early diagnosis and treatment is critical. In this review, we highlight key discoveries and recent studies on the role of FABP3 in cardiovascular disorders, with a particular focus on its clinical relevance as a biomarker for peripheral artery disease.
Collapse
|
3
|
Guo Q, Kawahata I, Cheng A, Jia W, Wang H, Fukunaga K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int J Mol Sci 2022; 23:9648. [PMID: 36077044 PMCID: PMC9455833 DOI: 10.3390/ijms23179648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. However, despite long-term research yielding numerous candidate neuroprotective drugs, there remains a lack of effective neuroprotective therapies for ischemic stroke patients. Among the factors contributing to this deficiency could be that single-target therapy is insufficient in addressing the complex and extensive mechanistic basis of ischemic brain injury. In this context, lipids serve as an essential component of multiple biological processes and play important roles in the pathogenesis of numerous common neurological diseases. Moreover, in recent years, fatty acid-binding proteins (FABPs), a family of lipid chaperone proteins, have been discovered to be involved in the onset or development of several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. However, comparatively little attention has focused on the roles played by FABPs in ischemic stroke. We have recently demonstrated that neural tissue-associated FABPs are involved in the pathological mechanism of ischemic brain injury in mice. Here, we review the literature published in the past decade that has reported on the associations between FABPs and ischemia and summarize the relevant regulatory mechanisms of FABPs implicated in ischemic injury. We also propose candidate FABPs that could serve as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Qingyun Guo
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - An Cheng
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Wenbin Jia
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haoyang Wang
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Incorporated, Sendai 982-0804, Japan
| |
Collapse
|
4
|
Siska W, Schultze AE, Ennulat D, Biddle K, Logan M, Adedeji AO, Arndt T, Aulbach A. Scientific and Regulatory Policy Committee Points to Consider: Integration of Clinical Pathology Data With Anatomic Pathology Data in Nonclinical Toxicology Studies. Vet Clin Pathol 2022; 51:311-329. [PMID: 35975895 DOI: 10.1111/vcp.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
Integrating clinical pathology data with anatomic pathology data is a common practice when reporting findings in the context of nonclinical toxicity studies and aids in understanding and communicating the nonclinical safety profile of test articles in development. Appropriate pathology data integration requires knowledge of analyte and tissue biology, species differences, methods of specimen acquisition and analysis, study procedures, and an understanding of the potential causes and effects of a variety of pathophysiologic processes. Neglecting these factors can lead to inappropriate data integration or a missed opportunity to enhance understanding and communication of observed changes. In such cases, nonclinical safety information relevant to human safety risk assessment may be misrepresented or misunderstood. This "Points to Consider" manuscript presents general concepts regarding pathology data integration in nonclinical studies, considerations for avoiding potential oversights and errors in data integration, and focused discussion on topics relevant to data integration for several key organ systems, including liver, kidney, and cardiovascular systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, USA
| | | |
Collapse
|
5
|
Siska W, Schultze AE, Ennulat D, Biddle K, Logan M, Adedeji AO, Arndt T, Aulbach AD. Scientific and Regulatory Policy Committee Points to Consider: Integration of Clinical Pathology Data With Anatomic Pathology Data in Nonclinical Toxicology Studies. Toxicol Pathol 2022; 50:808-826. [DOI: 10.1177/01926233221108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article is temporarily under embargo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, USA
| | | |
Collapse
|
6
|
Syed MH, Zamzam A, Khan H, Singh K, Forbes TL, Rotstein O, Abdin R, Eikelboom J, Qadura M. Fatty acid binding protein 3 is associated with peripheral arterial disease. JVS Vasc Sci 2021; 1:168-175. [PMID: 34617045 PMCID: PMC8489205 DOI: 10.1016/j.jvssci.2020.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Peripheral arterial disease (PAD) affects more than 150 million people worldwide and is associated with high rates of lower extremity amputation, myocardial infarction, stroke and death. Fatty acid binding protein 3 (FABP3) is released into circulation in patients with skeletal muscle injury. In this pilot study, we investigated a possible association between PAD and blood levels of FABP3. Methods Blood samples were collected from patients with clinical symptoms and diagnostic findings indicative of PAD (PAD group; ankle-brachial index [ABI] <0.9; n = 75) and in those without clinical or diagnostic features of PAD (non-PAD group; ABI >0.9; n = 75) presenting to vascular surgery ambulatory clinics at St. Michael's Hospital. Plasma samples were analyzed by protein multiplex to quantify FABP3 levels. Results PAD patients were found to have higher blood levels of FABP3 compared to patients without PAD (mean 3.90 ± 1.69 vs 2.03 ± 0.78; P < .001). A subgroup analysis demonstrated that the FABP3 levels were increased by almost two-fold in patients with PAD, independent of coronary artery disease (P < .001) or diabetes mellitus status (P < .001). Moreover, a significant negative correlation between FABP3 and the ABI was observed in PAD and patients without PAD matched groups (r = –0.51; P = .001). Last, immunohistochemistry demonstrated elevated expressions of FABP3 within skeletal muscle obtained from patients with the most severe form of PAD, chronic limb-threatening ischemia, when compared with patients without PAD. Conclusions Patients with PAD have elevated plasma levels of FABP3. An increasing severity of PAD is associated with higher FABP3 levels. There is a pressing need for a simple, readily accessible, blood-based biomarker for PAD. In this study, we found elevated levels of FABP3 in patients with PAD. This increase in FABP3 was irrespective of history of coronary artery disease or diabetes. Furthermore, our data suggest that an increasing severity of PAD is associated with higher FABP3 levels. Subsequently, FABP3 may be a potential diagnostic biomarker for PAD. However, further studies are needed to confirm the capability of FABP3 to serve as a valid and reliable biomarker for PAD.
Collapse
Affiliation(s)
- Muzammil H Syed
- Division of Vascular Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Hamzah Khan
- Division of Vascular Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Krishna Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Thomas L Forbes
- Division of Vascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ori Rotstein
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John Eikelboom
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Nabofa WEE, Alashe OO, Oyeyemi OT, Attah AF, Oyagbemi AA, Omobowale TO, Adedapo AA, Alada ARA. Cardioprotective Effects of Curcumin-Nisin Based Poly Lactic Acid Nanoparticle on Myocardial Infarction in Guinea Pigs. Sci Rep 2018; 8:16649. [PMID: 30413767 PMCID: PMC6226538 DOI: 10.1038/s41598-018-35145-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Myocardial infarction (MI) is the most prevalent cause of cardiovascular death. A possible way of preventing MI maybe by dietary supplements. The present study was thus designed to ascertain the cardio-protective effect of a formulated curcumin and nisin based poly lactic acid nanoparticle (CurNisNp) on isoproterenol (ISO) induced MI in guinea pigs. Animals were pretreated for 7 days as follows; Groups A and B animals were given 0.5 mL/kg of normal saline, group C metoprolol (2 mg/kg), groups D and E CurNisNp 10 and 21 mg/kg respectively (n = 5). MI was induced on the 7th day in groups B-E animals. On the 9th day electrocardiogram (ECG) was recorded, blood samples and tissue biopsies were collected for analyses. Toxicity studies on CurNisNp were carried out. MI induction caused atrial fibrillation which was prevented by pretreatment of metoprolol or CurNisNp. MI induction was also associated with increased expressions of cardiac troponin I (CTnI) and kidney injury molecule-1 (KIM-1) which were significantly reduced in guinea pig's pretreated with metoprolol or CurNisNp (P < 0.05). The LC50 of CurNisNp was 3258.2 μg/mL. This study demonstrated that the formulated curcumin-nisin based nanoparticle confers a significant level of cardio-protection in the guinea pig and is nontoxic.
Collapse
Affiliation(s)
- Williams E E Nabofa
- Department of Physiology, Bencarson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Nigeria.
| | - Oluwadamilola O Alashe
- Department of Physiology, Bencarson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Oyetunde T Oyeyemi
- Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - Alfred F Attah
- Department of Pharmacognosy, University of Ibadan, Ibadan, Nigeria
| | - Ademola A Oyagbemi
- Department of Veterinary Physiologv and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo O Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola R A Alada
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Malik ZA, Cobley JN, Morton JP, Close GL, Edwards BJ, Koch LG, Britton SL, Burniston JG. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity. Proteomes 2013; 1:290-308. [PMID: 24772389 PMCID: PMC3997170 DOI: 10.3390/proteomes1030290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001) in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides) subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA) of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly (p < 0.05) more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH) was 1.54-fold (p = 0.0064) more abundant in HCR than LCR soleus. This discovery was verified using selective reaction monitoring (SRM) of the y5 ion (551.21 m/z) of the doubly-charged peptide SLGVGFATR (454.19 m/z) of residues 23–31 of FABPH. SRM was conducted on technical replicates of each biological sample and exhibited a coefficient of variation of 20%. The abundance of FABPH measured by SRM was 2.84-fold greater (p = 0.0095) in HCR muscle. In addition, SRM of FABPH was performed in vastus lateralis samples of young and elderly humans with different habitual activity levels (collected during a previous study) finding FABPH abundance was 2.23-fold greater (p = 0.0396) in endurance-trained individuals regardless of differences in age. In summary, our findings in HCR/LCR rats provide protein-level confirmation for earlier transcriptome profiling work and show LC-MS is a viable means of profiling the abundance of almost all major metabolic enzymes of skeletal muscle in a highly parallel manner. Moreover, our approach is relatively more time efficient than techniques relying on orthogonal separations, and we demonstrate LC-MS profiling of the HCR/LCR selection model was able to highlight biomarkers that also exhibit differences in trained and untrained human muscle.
Collapse
Affiliation(s)
- Zulezwan A. Malik
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - James N. Cobley
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - Ben J. Edwards
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - Lauren G. Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-2200, USA; E-Mails: (L.G.K.); (S.L.B.)
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-2200, USA; E-Mails: (L.G.K.); (S.L.B.)
| | - Jatin G. Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-904-6265; Fax: +44-904-6283
| |
Collapse
|
9
|
Pyroglutamyl apelin-13 identified as the major apelin isoform in human plasma. Anal Biochem 2013; 442:1-9. [DOI: 10.1016/j.ab.2013.07.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 11/22/2022]
|
10
|
Rafalko A, Dai S, Hancock WS, Karger BL, Hincapie M. Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma. J Proteome Res 2012; 11:808-17. [PMID: 22098410 PMCID: PMC3656385 DOI: 10.1021/pr2006704] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein biomarkers are critical for diagnosis, prognosis, and treatment of disease. The transition from protein biomarker discovery to verification can be a rate limiting step in clinical development of new diagnostics. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS) is becoming an important tool for biomarker verification studies in highly complex biological samples. Analyte enrichment or sample fractionation is often necessary to reduce sample complexity and improve sensitivity of SRM for quantitation of clinically relevant biomarker candidates present at the low ng/mL range in blood. In this paper, we describe an alternative method for sample preparation for LC-SRM MS, which does not rely on availability of antibodies. This new platform is based on selective enrichment of proteotypic peptides from complex biological peptide mixtures via isoelectric focusing (IEF) on a digital ProteomeChip (dPC) for SRM quantitation using a triple quadrupole (QQQ) instrument with an LC-Chip (Chip/Chip/SRM). To demonstrate the value of this approach, the optimization of the Chip/Chip/SRM platform was performed using prostate specific antigen (PSA) added to female plasma as a model system. The combination of immunodepletion of albumin and IgG with peptide fractionation on the dPC, followed by SRM analysis, resulted in a limit of quantitation of PSA added to female plasma at the level of ∼1-2.5 ng/mL with a CV of ∼13%. The optimized platform was applied to measure levels of PSA in plasma of a small cohort of male patients with prostate cancer (PCa) and healthy matched controls with concentrations ranging from 1.5 to 25 ng/mL. A good correlation (r(2) = 0.9459) was observed between standard clinical ELISA tests and the SRM-based assay. Our data demonstrate that the combination of IEF on the dPC and SRM (Chip/Chip/SRM) can be successfully applied for verification of low abundance protein biomarkers in complex samples.
Collapse
Affiliation(s)
- Agnes Rafalko
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Shujia Dai
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - William S. Hancock
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Barry L. Karger
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Marina Hincapie
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
11
|
Hybrid immunoaffinity--mass spectrometric methods for efficient protein biomarker verification in pharmaceutical development. Bioanalysis 2011; 1:265-8. [PMID: 21083162 DOI: 10.4155/bio.09.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Schultze AE, Main BW, Hall DG, Hoffman WP, Lee HYC, Ackermann BL, Pritt ML, Smith HW. A comparison of mortality and cardiac biomarker response between three outbred stocks of Sprague Dawley rats treated with isoproterenol. Toxicol Pathol 2011; 39:576-88. [PMID: 21467541 DOI: 10.1177/0192623311402219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors compared the mortality and cardiac biomarker responses in three outbred stocks of Sprague Dawley rats (CD/IGS, Sasco, Harlan) treated with isoproterenol hydrochloride. Cardiac injury was confirmed by histologic evaluation, and increases in cardiac troponin I concentration in serum were measured by two methods. CD/IGS rats had a higher incidence and earlier mortality compared with Sasco or Harlan rats. Harlan rats had lower severity scores for cardiomyocyte degeneration/necrosis compared with the other stocks. Post-isoproterenol treatment cardiac troponin I concentrations were greater in CD/IGS and Sasco rats compared with Harlan rats. Concentrations of cardiac troponin T followed a similar pattern to that of cardiac troponin I in rats treated with isoproterenol. Myosin, light chain 3 concentrations increased in all rats treated with isoproterenol, but there was no difference between the three stocks in the magnitude or pattern of the dose response. Increases in fatty acid binding protein 3 concentrations were detected in only the highest dose group at the earliest timepoint postdose for all three stocks of rats. Results of these studies illustrate the need for investigators to recognize the potential differences in response between stocks of Sprague Dawley rats treated with cardiotoxicants or novel chemical entities.
Collapse
Affiliation(s)
- A Eric Schultze
- Department of Pathology, Lilly Research Laboratories, a Division of Eli Lilly and Company, Indianapolis, Indiana 46225, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sun D, Hamlin D, Butterfield A, Watson DE, Smith HW. Electrochemiluminescent immunoassay for rat skeletal troponin I (Tnni2) in serum. J Pharmacol Toxicol Methods 2010; 61:52-8. [DOI: 10.1016/j.vascn.2009.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
14
|
Berna M, Ackermann B. Increased Throughput for Low-Abundance Protein Biomarker Verification by Liquid Chromatography/Tandem Mass Spectrometry. Anal Chem 2009; 81:3950-6. [DOI: 10.1021/ac9002744] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Berna
- Eli Lilly and Company, Drug Disposition Biomarker Group, Lilly Corporate Center, Indianapolis, Indiana, 46285
| | - Bradley Ackermann
- Eli Lilly and Company, Drug Disposition Biomarker Group, Lilly Corporate Center, Indianapolis, Indiana, 46285
| |
Collapse
|
15
|
Han B, Higgs RE. Proteomics: from hypothesis to quantitative assay on a single platform. Guidelines for developing MRM assays using ion trap mass spectrometers. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:340-54. [PMID: 18579614 DOI: 10.1093/bfgp/eln032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-throughput HPLC-mass spectrometry (HPLC-MS) is routinely used to profile biological samples for potential protein markers of disease, drug efficacy and toxicity. The discovery technology has advanced to the point where translating hypotheses from proteomic profiling studies into clinical use is the bottleneck to realizing the full potential of these approaches. The first step in this translation is the development and analytical validation of a higher throughput assay with improved sensitivity and selectivity relative to typical profiling assays. Multiple reaction monitoring (MRM) assays are an attractive approach for this stage of biomarker development given their improved sensitivity and specificity, the speed at which the assays can be developed and the quantitative nature of the assay. While the profiling assays are performed with ion trap mass spectrometers, MRM assays are traditionally developed in quadrupole-based mass spectrometers. Development of MRM assays from the same instrument used in the profiling analysis enables a seamless and rapid transition from hypothesis generation to validation. This report provides guidelines for rapidly developing an MRM assay using the same mass spectrometry platform used for profiling experiments (typically ion traps) and reviews methodological and analytical validation considerations. The analytical validation guidelines presented are drawn from existing practices on immunological assays and are applicable to any mass spectrometry platform technology.
Collapse
Affiliation(s)
- Bomie Han
- Lilly Corporate Center, Drop Code GL54, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
16
|
Pritt ML, Hall DG, Recknor J, Credille KM, Brown DD, Yumibe NP, Schultze AE, Watson DE. Fabp3 as a biomarker of skeletal muscle toxicity in the rat: comparison with conventional biomarkers. Toxicol Sci 2008; 103:382-96. [PMID: 18308699 DOI: 10.1093/toxsci/kfn042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fatty acid binding protein 3 (Fabp3) has been used as a serological biomarker of cardiac injury, but its utility as a preclinical biomarker of injury to skeletal muscle is not well described. Fabp3 concentrations were determined for tissues from Sprague-Dawley rats and found to occur at highest concentrations in cardiac muscle and in skeletal muscles containing an abundance of type I fibers, such as the soleus muscle. Soleus is also a primary site of skeletal muscle (SKM) injury caused by lipid-lowering peroxisome proliferator-activated receptor alpha (PPAR-alpha) agonists. In rats administered repeat doses of a PPAR-alpha agonist, the kinetics and amplitude of plasma concentrations of Fabp3 were consistent with plasma compound concentrations and histopathology findings of swollen, hyalinized, and fragmented muscle fibers with macrophage infiltration. Immunohistochemical detection of Fabp3 revealed focal depletion of Fabp3 protein from injured SKM fibers which is consistent with increased serum Fabp3 concentrations in treated rats. We then assessed the predictivity of serological Fabp3 for SKM necrosis in short duration toxicology studies. Rats were treated with various doses of 27 different compounds, and the predictivity of serological biomarkers was assessed relative to histology in individual rats and in treatment groups. Under these study conditions, Fabp3 was the most useful individual biomarker based on concordance, sensitivity, positive and negative predictive values, and false negative rate. In addition, the combination of Fabp3 and aspartate aminotransferase (AST) had greater diagnostic value than the conventional combination of creatine kinase-MM isoenzyme (CK) and AST.
Collapse
Affiliation(s)
- Michael L Pritt
- Investigative Toxicology, Lilly Research Laboratories, Greenfield, Indiana 46140, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
O'Brien PJ. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology 2007; 245:206-18. [PMID: 18249481 DOI: 10.1016/j.tox.2007.12.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 12/07/2007] [Indexed: 01/01/2023]
Abstract
There is an overwhelming weight of evidence that certifies cardiac troponin (cTn) as the preferred, defacto, translational, safety biomarker for myocardial injury in cardiotoxicity. As well as being the gold standard for cardiac injury in man, it has been widely used for clinical assessment and monitoring of cardiac toxicity in humans being treated for cancer. Furthermore, several dozen preclinical published studies have directly confirmed its effectiveness in laboratory animals for assessment of cardiotoxicity. It is gradually being reverse translated from human into animal use as a safety biomarker. Its use is especially merited whenever there is any safety signal indicating potential cardiotoxicity and its required inclusion as a routine biomarker in preclinical safety studies seems on the horizon. There are some considerations that are unique to use of cTn assays in animals. Lack of awareness of these has, historically, significantly inhibited the introduction of cTn as a safety biomarker in preclinical toxicology. Firstly, cross-species reactivity is usually but not always high. Secondly, there is a background of cardiac injury that needs to be controlled for, including spontaneous cardiomyopathy in Sprague Dawley rats, and inappropriate blood collection methods. Also, there are faster kinetics of clearance in rats than for humans. Also, coincident muscle injury is frequent with cardiotoxicity and requires a skeletal muscle biomarker. Because cTn assays were developed for detection of gross cardiac necrosis, such as occurs with myocardial infarct, the more sensitive assays should be used for preclinical studies. However, analytic sensitivity is higher for standard preclinical studies than for clinical diagnostic testing because of use of concurrent controls and use of batch analysis that eliminates interassay variability. No other biomarker of myocardial injury comes close to cTn in effectiveness, including CK-MB, LDH-1 and 2, myoglobin, and FABP3. In addition to the use of cTn for monitoring active myocardial degeneration, there is growing evidence that measurements of brain natriuretic peptide (BNP) may be effective for monitoring drug-induced left ventricular dysfunction.
Collapse
Affiliation(s)
- Peter James O'Brien
- Room 013 Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|