1
|
Mihaljevic O, Zivancevic-Simonovic S, Jovanovic D, Drakulic SM, Vukajlovic JT, Markovic A, Pirkovic MS, Srejovic I, Jakovljevic V, Milosevic-Djordjevic O. Oxidative stress and DNA damage in critically ill patients with sepsis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503655. [PMID: 37491118 DOI: 10.1016/j.mrgentox.2023.503655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
The aim of our study was to assess the oxidative stress and inflammatory status in critically ill patients with sepsis as well as their relationship with the level of DNA damage. The study also evaluated the influence of all analyzed parameters on the outcome of the patients. The study included 27 critically ill patients with sepsis and 20 healthy subjects. Comet Assay was used for the measurement of the level of DNA damage, expressed as genetic damage index (GDI). Both oxidative stress parameters and the antioxidant parameters were obtained spectrophotometrically. The standard laboratory methods and the appropriate autoanalyzers were performed for determination the parameters of inflammation. A higher level of oxidative stress and more pronounced inflammation were found in the patients with sepsis compared to healthy subjects. The activity of the antioxidant enzymes was statistically declined in patients with sepsis, so that the most notable differences between two groups of participants were found for the activity of superoxide dismutase (SOD) (p = 0.004). Comet assay indicated that patients with sepsis had significantly higher GDI compared to healthy subjects (p < 0.001), which positively correlated with the concentration of superoxide anion radical (О2-) (r = 0.497, p = 0.010), and nitrites (NО2-) (r = 0.473, p = 0.015), as well with the concentration of C reactive protein (CRP) (r = 0.460, p = 0.041). Regression analysis confirmed that patients' age (p = 0.033), the level of О2- (p = 0.007), CRP concentration (p = 0.029) and GDI (p = 0.001) increased the risk of lethal outcome in critically ill patients with sepsis. In conclusion, critically ill patients with sepsis have a higher degree of oxidative stress and inflammation which contribute to a higher level of DNA damage. Consequently, above mentioned parameters, including patients' age, adversely affect the outcome of critically ill patients with sepsis.
Collapse
Affiliation(s)
- Olgica Mihaljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pathophysiology, Serbia.
| | | | - Danijela Jovanovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Serbia; University Clinical Center Kragujevac, Serbia
| | - Svetlana Miletic Drakulic
- University Clinical Center Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Neurology, Serbia
| | | | - Aleksandra Markovic
- University of Kragujevac, Faculty of Sciences, Department of Biology, Serbia
| | - Marijana Stanojevic Pirkovic
- University Clinical Center Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Serbia
| | - Ivan Srejovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Serbia
| | - Vladimir Jakovljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Serbia
| | - Olivera Milosevic-Djordjevic
- University of Kragujevac, Faculty of Sciences, Department of Biology, Serbia; University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, Serbia
| |
Collapse
|
2
|
Abstract
OBJECTIVE Immune dysregulation is a defining feature of sepsis, but the role for mitochondria in the development of immunoparalysis in pediatric sepsis is not known. We sought to determine if mitochondrial dysfunction measured in peripheral blood mononuclear cells (PBMCs) is associated with immunoparalysis and systemic inflammation in children with sepsis. DESIGN Prospective observational study. SETTING Single-academic pediatric intensive care unit (PICU). PATIENTS One hundred sixty-one children with sepsis/septic shock and 18 noninfected PICU controls. MEASUREMENTS AND MAIN RESULTS Mitochondrial respiration in PBMCs, markers of immune function, and plasma cytokines were measured on days 1 to 2 (T1), 3 to 5 (T2), and 8 to 14 (T3) after sepsis recognition, and once for controls. Immunoparalysis was defined as whole-blood ex vivo lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-α) ≤200 pg/mL or monocyte human leukocyte antigen-DR ≤30%. Mitochondrial respiration was lower in children with versus without immunoparalysis measured at the same timepoint. Mitochondrial respiration measured early (at T1 and T2) was also lower in those with immunoparalysis at T2 and T3, respectively. Although most patients with immunoparalysis exhibited low mitochondrial respiration, this metabolic finding was not specific to the immunoparalysis phenotype. Plasma cytokines, including IL-8, IL-10, TNF-α, and MCP-1, were highest in the subset of sepsis patients with immune paralysis or low mitochondrial respiration at T1. CONCLUSIONS Children with sepsis had lower PBMC mitochondrial respiration when immunoparalysis was present compared with those without immunoparalysis. The subsets with immune paralysis and low mitochondrial respiration exhibited the highest levels of systemic inflammation.
Collapse
|
3
|
Feng Y, Liu B, Zheng X, Chen L, Chen W, Fang Z. The protective role of autophagy in sepsis. Microb Pathog 2019; 131:106-111. [PMID: 30935962 DOI: 10.1016/j.micpath.2019.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Sepsis is characterized by life-threatening organ dysfunction caused by a deregulated host response to infection. Autophagy is one of the innate immune defense mechanisms against microbial attack. Previous studies have demonstrated that autophagy is activated initially in sepsis, followed by a subsequent phase of impairment. A number of sepsis-related studies have shown that autophagy plays a protective role in multiple organ injuries partly by clearing pathogens, regulating inflammation and metabolism, inhibiting apoptosis and suppressing immune reactions. In this review, we present a general overview of and recent advances in the role of autophagy in sepsis and consider the therapeutic potential of autophagy activators in treating sepsis.
Collapse
Affiliation(s)
- Ying Feng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China; Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Boyi Liu
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Xiang Zheng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Li Chen
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Wei Chen
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Zhicheng Fang
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
4
|
Kumar S, Gupta E, Kaushik S, Kumar Srivastava V, Mehta SK, Jyoti A. Evaluation of oxidative stress and antioxidant status: Correlation with the severity of sepsis. Scand J Immunol 2018; 87:e12653. [PMID: 29484685 DOI: 10.1111/sji.12653] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
Abstract
Sepsis is a condition caused by infection followed by unregulated inflammatory response which may lead to the organ dysfunction. During such condition, over-production of oxidants is one of the factors which contribute cellular toxicity and ultimately organ failure and mortality. Antioxidants having free radicals scavenging activity exert protective role in various diseases. This study has been designed to evaluate the levels of oxidative and antioxidative activity in sepsis patients and their correlation with the severity of the sepsis. A total of 100 sepsis patients and 50 healthy controls subjects were enrolled in this study from the period October 2016 to June 2017. The investigation included measurements of oxidative enzyme, myeloperoxidase (MPO), antioxidant enzymes including superoxide dismutase activity (SOD) and catalase activity (CAT) and cytokines (TNF-α, IL-8 and IFN-γ). Furthermore, the level of these activities was correlated with severity of sepsis. Augmented levels of oxidants were found in sepsis as demonstrated by DMPO nitrone adduct formation and plasma MPO level activity (1.37 ± 0.51 in sepsis vs 0.405 ± 0.16 in control subjects). Cytokines were also found to be increased in sepsis patients. However, plasma SOD and CAT activities were significantly attenuated (P < .001) in the sepsis patients compared with controls subjects. Moreover, inverse relation between antioxidant enzymes (SOD and CAT) and organ failure assessment (SOFA), physiological score (APACHE II), organ toxicity specific markers have been observed as demonstrated by Pearson's correlation coefficient. This study suggests that imbalance between oxidant and antioxidant plays key role in the severity of sepsis.
Collapse
Affiliation(s)
- S Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - E Gupta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - S Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - V Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - S K Mehta
- Department of General Medicine, SMS Medical College & Attached Hospitals, Jaipur, India
| | - A Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
5
|
Abstract
Sepsis is a systemic inflammatory response caused by infection whose molecular mechanisms are still not completely understood. The early detection of sepsis remains a great challenge for clinicians because no single biomarker capable of its reliable prediction, hence, delayed diagnosis frequently undermines treatment efforts, thereby contributing to high mortality. There are several experimental approaches used to reveal the molecular mechanism of sepsis progression. Proteomics coupled with mass spectrometry made possible to identify differentially expressed proteins in clinical samples. Recent advancement in liquid chromatography-based separation methods and mass spectrometers resolution and sensitivity with absolute quantitation methods, made possible to use proteomics as a powerful tool for study of clinical samples with higher coverage proteome profiles. In recent years, number of proteomic studies have been done under sepsis and/or in response to endotoxin and showed various signaling pathways, functions, and biomarkers. This review enlightened the proteomic progress in the last decade in sepsis.
Collapse
|
6
|
Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 2016; 17:406-13. [PMID: 26950237 DOI: 10.1038/ni.3398] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
Abstract
The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.
Collapse
|
7
|
Nie X, Liang L, Xi H, Jiang S, Jiang J, Tang C, Liu X, Liu S, Wan C, Zhao J, Yang J. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production. J Appl Toxicol 2014; 35:851-60. [PMID: 25382668 DOI: 10.1002/jat.3084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD-mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence-associated β-galactosidase (SA-β-Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β-catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose- and time-dependent manners. Further, TCDD led to cell-cycle arrest, F-actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β-catenin signaling pathway, ameliorated the effect of TCDD on cellular β-catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β-catenin and ROS-dependent mechanisms.
Collapse
Affiliation(s)
- Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Hanqing Xi
- Department of Disease Prevention, Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| | - Shengyang Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Junkang Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xipeng Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Suyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianbin Yang
- Department of Disease Prevention, Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
8
|
Cao Z, Robinson RAS. The role of proteomics in understanding biological mechanisms of sepsis. Proteomics Clin Appl 2014; 8:35-52. [PMID: 24339042 DOI: 10.1002/prca.201300101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 11/10/2022]
Abstract
Sepsis is a systemic inflammatory state caused by infection. Complications of this infection with multiple organ failure lead to more lethal conditions, such as severe sepsis and septic shock. Sepsis is one of the leading causes of US deaths. Novel biomarkers with high sensitivity and specificity may be helpful for early diagnosis of sepsis and for improvement of patient outcomes through the development of new therapies. Mass spectrometry-based proteomics offers powerful tools to identify such biomarkers and furthermore to give insight to fundamental mechanisms of this clinical condition. In this review, we summarize findings from proteomics studies of sepsis and how their applications have provided more understanding into the pathogenesis of septic infection. Literatures related to "proteomics", "sepsis", "systemic inflammatory response syndrome", "severe sepsis", "septic infection", and "multiple organ dysfunction syndrome" were searched using PubMed. Findings about neonatal and adult sepsis are discussed separately. Within the adult sepsis studies, results are grouped based on the models (e.g., human or animal). Across investigations in clinical populations and in rodent and mammalian animal models, biological pathways, such as inflammatory and acute phase response, coagulation, complement, mitochondrial energy metabolism, chaperones, and oxidative stress, are altered at the protein level. These proteomics studies have discovered many novel biomarker candidates of septic infection. Validation the clinical use of these biomarker candidates may significantly impact the diagnosis and prognosis of sepsis. In addition, the molecular mechanisms revealed by these studies may also guide the development of more effective treatments.
Collapse
Affiliation(s)
- Zhiyun Cao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
9
|
Yimin, Tao H, Kohanawa M, Zhao S, Kuge Y, Tamaki N. Ferrous ferric chloride downregulates the inflammatory response to Rhodococcus aurantiacus infection in mice. Biol Pharm Bull 2012; 35:2214-23. [PMID: 23006611 DOI: 10.1248/bpb.b12-00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The healthy drink Pairogen is mainly composed of ferrous ferric chloride water that reportedly changes the status of intracellular water from oxidative to antioxidative. Here, we investigated whether Pairogen affects host immune function in a murine model of granulomatous inflammation in response to Rhodococcus aurantiacus (R. aurantiacus) infection. Longitudinal ingestion of Pairogen markedly improved the survival of infected mice in a concentration-dependent manner. Compared to mice received water, mice that ingested 10-fold-diluted Pairogen displayed rapid bacterial elimination, decreased production of tumor necrosis factor (TNF)-α and interleukin (IL)-6, and high levels of IL-10 in organs during the initial phase of infection. Moreover, histological studies showed significant reduction in the number and size of granulomas as well as amelioration of oxidative stress in the livers of mice ingested 10-fold-diluted Pairogen at 14 d post-infection. These characteristics were further pronounced in first-generation (F1) mice that also ingested 10-fold-diluted Pairogen. Following stimulation with heat-killed R. aurantiacus, the production of TNF-α, IL-6, and IL-10 by macrophages from F1 mice was similar to that detected in vivo, while their gene expression levels in these cells were significantly lower than the levels in macrophages from mice received water. Heat-killed R. aurantiacus also induced the expression of heme oxygenase-1 mRNA in the cells from F1 mice. Taken together, these results indicate that Pairogen contributes to the negative regulation of the immuno-inflammatory response to R. aurantiacus infection in mice by modulating the cellular redox state. Longitudinal ingestion of Pairogen further enhances the defense function in mouse progeny.
Collapse
Affiliation(s)
- Yimin
- Department of Advanced Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | | | | | | | | | | |
Collapse
|