1
|
Gualtieri F, Nowakowska M, von Rüden EL, Seiffert I, Potschka H. Epileptogenesis-Associated Alterations of Heat Shock Protein 70 in a Rat Post-Status Epilepticus Model. Neuroscience 2019; 415:44-58. [DOI: 10.1016/j.neuroscience.2019.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
|
2
|
Naveed M, Mubeen S, Khan A, Ibrahim S, Meer B. Plasma Biomarkers: Potent Screeners of Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2019; 34:290-301. [PMID: 31072117 PMCID: PMC10852434 DOI: 10.1177/1533317519848239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), a neurological disorder, is as a complex chronic disease of brain cell death that usher to cognitive decline and loss of memory. Its prevalence differs according to risk factors associated with it and necropsy performs vital role in its definite diagnosis. The stages of AD vary from preclinical to severe that proceeds to death of patient with no availability of treatment. Biomarker may be a biochemical change that can be recognized by different emerging technologies such as proteomics and metabolomics. Plasma biomarkers, 5-protein classifiers, are readily being used for the diagnosis of AD and can also predict its progression with a great accuracy, specificity, and sensitivity. In this review, upregulation or downregulation of few plasma proteins in patients with AD has also been discussed, when juxtaposed with control, and thus serves as potent biomarker in the diagnosis of AD.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Shamsa Mubeen
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| | - Abeer Khan
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sehrish Ibrahim
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Bisma Meer
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
3
|
Gajera CR, Fernandez R, Postupna N, Montine KS, Fox EJ, Tebaykin D, Angelo M, Bendall SC, Keene CD, Montine TJ. Mass synaptometry: High-dimensional multi parametric assay for single synapses. J Neurosci Methods 2018; 312:73-83. [PMID: 30465796 DOI: 10.1016/j.jneumeth.2018.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Synaptic alterations, especially presynaptic changes, are cardinal features of neurodegenerative diseases and strongly correlate with cognitive decline. NEW METHOD We report "Mass Synaptometry" for the high-dimensional analysis of individual human synaptosomes, enriched nerve terminals from brain. This method was adapted from cytometry by time-of-flight mass spectrometry (CyTOF), which is commonly used for single-cell analysis of immune and blood cells. RESULT Here we overcome challenges for single synapse analysis by optimizing synaptosome preparations, generating a 'SynTOF panel,' recalibrating acquisition settings, and applying computational analyses. Through the analysis of 390,000 individual synaptosomes, we also provide proof-of principle validation by characterizing changes in synaptic diversity in Lewy Body Disease (LBD), Alzheimer's disease and normal brain. COMPARISON WITH EXISTING METHOD(S) Current imaging methods to study synapses in humans are capable of analyzing a limited number of synapses, and conventional flow cytometric techniques are typically restricted to fewer than 6 parameters. Our method allows for the simultaneous detection of 34 parameters from tens of thousands of individual synapses. CONCLUSION We applied Mass Synaptometry to analyze 34 parameters simultaneously on more than 390,000 synaptosomes from 13 human brain samples. This new approach revealed regional and disease-specific changes in synaptic phenotypes, including validation of this method with the expected changes in the molecular composition of striatal dopaminergic synapses in Lewy body disease and Alzheimer's disease. Mass synaptometry enables highly parallel molecular profiling of individual synaptic terminals.
Collapse
Affiliation(s)
- Chandresh R Gajera
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Rosemary Fernandez
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Kathleen S Montine
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Edward J Fox
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Dmitry Tebaykin
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Michael Angelo
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - Sean C Bendall
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Thomas J Montine
- Department of Pathology, Stanford University Medical Center, Stanford, CA, United States.
| |
Collapse
|
4
|
Abstract
Proteomics and lipidomics are powerful tools to the large-scale study of proteins and lipids, respectively. Several methods can be employed with particular benefits and limitations in the study of human brain. This is a review of the rationale use of current techniques with particular attention to limitations and pitfalls inherent to each one of the techniques, and more importantly, to their use in the study of post-mortem brain tissue. These aspects are cardinal to avoid false interpretations, errors and unreal expectancies. Other points are also stressed as exemplified in the analysis of human neurodegenerative diseases which are manifested by disease-, region-, and stage-specific modifications commonly in the context of aging. Information about certain altered protein clusters and proteins oxidatively damaged is summarized for Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Isidro Ferrer
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona; and Network Center of Biomedical Research on Neurodegenerative Diseases, Institute Carlos III; Hospitalet de Llobregat, Llobregat, Spain.
| |
Collapse
|
5
|
Bazzigaluppi P, Ebrahim Amini A, Weisspapir I, Stefanovic B, Carlen PL. Hungry Neurons: Metabolic Insights on Seizure Dynamics. Int J Mol Sci 2017; 18:ijms18112269. [PMID: 29143800 PMCID: PMC5713239 DOI: 10.3390/ijms18112269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Epilepsy afflicts up to 1.6% of the population and the mechanisms underlying the appearance of seizures are still not understood. In past years, many efforts have been spent trying to understand the mechanisms underlying the excessive and synchronous firing of neurons. Traditionally, attention was pointed towards synaptic (dys)function and extracellular ionic species (dys)regulation. Recently, novel clinical and preclinical studies explored the role of brain metabolism (i.e., glucose utilization) of seizures pathophysiology revealing (in most cases) reduced metabolism in the inter-ictal period and increased metabolism in the seconds preceding and during the appearance of seizures. In the present review, we summarize the clinical and preclinical observations showing metabolic dysregulation during epileptogenesis, seizure initiation, and termination, and in the inter-ictal period. Recent preclinical studies have shown that 2-Deoxyglucose (2-DG, a glycolysis blocker) is a novel therapeutic approach to reduce seizures. Furthermore, we present initial evidence for the effectiveness of 2-DG in arresting 4-Aminopyridine induced neocortical seizures in vivo in the mouse.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Azin Ebrahim Amini
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Iliya Weisspapir
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Peter L Carlen
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Department of Medicine & Physiology, and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
El Kadmiri N, El Khachibi M, Slassi I, El Moutawakil B, Nadifi S, Soukri A. Assessment of GAPDH expression by quantitative real time PCR in blood of Moroccan AD cases. J Clin Neurosci 2017; 40:24-26. [PMID: 28087189 DOI: 10.1016/j.jocn.2016.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroproteomics studies have showed the high affinity interactions between GAPDH - β-amyloid in Alzheimer disease. The aim of our study is to complete our previous studies by assessing the mechanism responsible of decreased expression of GAPDH protein in the blood of Moroccan AD cases probably due to an alteration at the transcriptional level or at the post translational level. METHODS The mRNA expression of GAPDH was assessed by quantitative real time PCR in AD cases and healthy controls. RESULTS Our result revealed a significant difference of mRNA expression level of GAPDH in AD cases as compared to healthy controls (P<0.05). CONCLUSION This data is consistent with several studies by showing the direct involvement of GAPDH in amyloid aggregation by undergoing several modifications, which influence its chemical structure and its biological activity.
Collapse
Affiliation(s)
- Nadia El Kadmiri
- IBN ZOHR University, Faculté Polydisciplinaire de Taroudant, B.P: 271, 83 000 Taroudant, Morocco; Hassan II University of Casablanca, Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, 19 Rue Tarik Ibnou Ziad, B.P: 9154, Morocco.
| | - Meryam El Khachibi
- Hassan II University of Casablanca, Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, 19 Rue Tarik Ibnou Ziad, B.P: 9154, Morocco
| | - Ilham Slassi
- Hassan II University of Casablanca, Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, 19 Rue Tarik Ibnou Ziad, B.P: 9154, Morocco; Neurology Department, IBN ROCHD University, Hospital, rue des Hôpitaux, Casablanca, Morocco
| | - Bouchra El Moutawakil
- Hassan II University of Casablanca, Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, 19 Rue Tarik Ibnou Ziad, B.P: 9154, Morocco; Neurology Department, IBN ROCHD University, Hospital, rue des Hôpitaux, Casablanca, Morocco
| | - Sellama Nadifi
- Hassan II University of Casablanca, Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, 19 Rue Tarik Ibnou Ziad, B.P: 9154, Morocco
| | - Abdelaziz Soukri
- Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
7
|
Häggmark A, Schwenk JM, Nilsson P. Neuroproteomic profiling of human body fluids. Proteomics Clin Appl 2015; 10:485-502. [PMID: 26286680 DOI: 10.1002/prca.201500065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/17/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
Analysis of protein expression and abundance provides a possibility to extend the current knowledge on disease-associated processes and pathways. The human brain is a complex organ and dysfunction or damage can give rise to a variety of neurological diseases. Although many proteins potentially reflecting disease progress are originating from brain, the scarce availability of human tissue material has lead to utilization of body fluids such as cerebrospinal fluid and blood in disease-related research. Within the most common neurological disorders, much effort has been spent on studying the role of a few hallmark proteins in disease pathogenesis but despite extensive investigation, the signatures they provide seem insufficient to fully understand and predict disease progress. In order to expand the view the field of neuroproteomics has lately emerged alongside developing technologies, such as affinity proteomics and mass spectrometry, for multiplexed and high-throughput protein profiling. Here, we provide an overview of how such technologies have been applied to study neurological disease and we also discuss some important considerations concerning discovery of disease-associated profiles.
Collapse
Affiliation(s)
- Anna Häggmark
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
8
|
Paraizo Leite RE, Tenenholz Grinberg L. Closing the gap between brain banks and proteomics to advance the study of neurodegenerative diseases. Proteomics Clin Appl 2015; 9:832-7. [PMID: 26059592 DOI: 10.1002/prca.201400192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/01/2015] [Accepted: 05/27/2015] [Indexed: 11/05/2022]
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease and Parkinson's disease, are among the most debilitating neurological disorders, and as life expectancy rises quickly around the world, the scientific and clinical challenges of dealing with them will also increase dramatically, putting increased pressure on the biomedical community to come up with innovative solutions for the understanding, diagnosis, and treatment of these conditions. Despite several decades of intensive research, there is still little that can be done to prevent, cure, or even slow down the progression of NDs in most patients. There is an urgent need to develop new lines of basic and applied research that can be quickly translated into clinical application. One way to do this is to apply the tools of proteomics to well-characterized samples of human brain tissue, but a closer partnership must still be forged between proteomic scientists, brain banks, and clinicians to explore the maximum potential of this approach. Here, we analyze the challenges and potential benefits of using human brain tissue for proteomics research toward NDs.
Collapse
Affiliation(s)
- Renata Elaine Paraizo Leite
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group-LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Discipline of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Lea Tenenholz Grinberg
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group-LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Lin X, Shi M, Masilamoni JG, Dator R, Movius J, Aro P, Smith Y, Zhang J. Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:779-87. [PMID: 25617661 DOI: 10.1016/j.bbapap.2015.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
Abstract
Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
Collapse
Affiliation(s)
- Xiangmin Lin
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; School of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Romel Dator
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - James Movius
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Patrick Aro
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
10
|
El Kadmiri N, Slassi I, El Moutawakil B, Nadifi S, Tadevosyan A, Hachem A, Soukri A. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease. ACTA ACUST UNITED AC 2014; 62:333-6. [PMID: 25246025 DOI: 10.1016/j.patbio.2014.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/29/2014] [Indexed: 01/23/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme that catalyzes the sixth step of glycolysis and thus, serves to break down glucose for energy production. Beyond the traditional aerobic metabolism of glucose, recent studies have highlighted additional roles played by GAPDH in non-metabolic processes, such as control of gene expression and redox post-translational modifications. Neuroproteomics have revealed high affinity interactions between GAPDH and Alzheimer's disease-associated proteins, including the β-amyloid, β-amyloid precursor protein and tau. This neuronal protein interaction may lead to impairment of the GAPDH glycolytic function in Alzheimer's disease and may be a forerunner of its participation in apoptosis. The present review examines the crucial implication of GAPDH in neurodegenerative processes and clarifies its role in apoptotic cell death.
Collapse
Affiliation(s)
- N El Kadmiri
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco.
| | - I Slassi
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Department of Neurology CHU IBN ROCHD, Casablanca, Morocco
| | - B El Moutawakil
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Department of Neurology CHU IBN ROCHD, Casablanca, Morocco
| | - S Nadifi
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - A Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - A Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
| | - A Soukri
- Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
11
|
Lista S, Faltraco F, Prvulovic D, Hampel H. Blood and plasma-based proteomic biomarker research in Alzheimer's disease. Prog Neurobiol 2013; 101-102:1-17. [DOI: 10.1016/j.pneurobio.2012.06.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/14/2022]
|
12
|
Perluigi M, Coccia R, Butterfield DA. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal 2012; 17:1590-609. [PMID: 22114878 PMCID: PMC3449441 DOI: 10.1089/ars.2011.4406] [Citation(s) in RCA: 343] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Among different forms of oxidative stress, lipid peroxidation comprises the interaction of free radicals with polyunsaturated fatty acids, which in turn leads to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. HNE is considered a robust marker of oxidative stress and a toxic compound for several cell types. Proteins are particularly susceptible to modification caused by HNE, and adduct formation plays a critical role in multiple cellular processes. RECENT ADVANCES With the outstanding progress of proteomics, the identification of putative biomarkers for neurodegenerative disorders has been the main focus of several studies and will continue to be a difficult task. CRITICAL ISSUES The present review focuses on the role of lipid peroxidation, particularly of HNE-induced protein modification, in neurodegenerative diseases. By comparing results obtained in different neurodegenerative diseases, it may be possible to identify both similarities and specific differences in addition to better characterize selective neurodegenerative phenomena associated with protein dysfunction. Results obtained in our laboratory and others support the common deregulation of energy metabolism and mitochondrial function in neurodegeneration. FUTURE DIRECTIONS Research towards a better understanding of the molecular mechanisms involved in neurodegeneration together with identification of specific targets of oxidative damage is urgently required. Redox proteomics will contribute to broaden the knowledge in regard to potential biomarkers for disease diagnosis and may also provide insight into damaged metabolic networks and potential targets for modulation of disease progression.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | |
Collapse
|
13
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cognitive impairment, including dementia, is commonly seen in those afflicted with Parkinson disease (PD), particularly at advanced disease stages. Pathologically, PD with dementia (PD-D) is most often associated with the presence of cortical Lewy bodies, as is the closely related dementia with Lewy bodies (DLB). Both PD-D and DLB are also frequently complicated by the presence of neurofibrillary tangles and amyloid plaques, features most often attributed to Alzheimer disease. Biomarkers are urgently needed to differentiate among these disease processes and predict dementia in PD as well as monitor responses of patients to new therapies. A few clinical assessments, along with structural and functional neuroimaging, have been utilized in the last few years with some success in this area. Additionally, a number of other strategies have been employed to identify biochemical/molecular biomarkers associated with cognitive impairment and dementia in PD, e.g. targeted analysis of candidate proteins known to be important to PD pathogenesis and progression in cerebrospinal fluid or blood. Finally, interesting results are emerging from preliminary studies with unbiased and high throughput genomic, proteomic and metabolomic techniques. The current findings and perspectives of applying these strategies and techniques are reviewed in this article, together with potential areas of advancement.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | | | | |
Collapse
|
15
|
Quest for new genomic and proteomic biomarkers in neurology. Transl Neurosci 2011. [DOI: 10.2478/s13380-011-0005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe possibility of identifying novel biomarkers for neurodegenerative diseases has been greatly enhanced with recent advances in genomics and proteomics. Novel technologies have the potential to hasten the development of new biomarkers useful as predictors of disease etiology and outcome, as well as responsiveness to therapy. Disease-modifying new therapies are very much needed in modern approaches to treatment of neurodegenerative diseases. Current progress in the field encounters a degree of skepticism about the reliability of genomic and proteomic data and its relevance for clinical applications. Standard operating procedures covering sample collection, methodology and statistical analysis need to be fully developed and strictly adhered to in order to assure reproducible and clinically relevant results. Previous studies involving patients with neurodegenerative diseases show promise in using genomic and proteomic approaches for development of new biomarkers. Confirmation of any novel biomarker in multiple independent patient cohorts and correlation of the improvement in biomarker endpoint with clinical improvement in longitudinal patient studies remains crucial for future successful application. We propose that a combination of approaches in biomarker discovery may in the end lead to identification of promising candidates at DNA, RNA, protein and small molecule level.
Collapse
|
16
|
Kossowska B, Dudka I, Bugla-Płoskońska G, Szymańska-Chabowska A, Doroszkiewicz W, Gancarz R, Andrzejak R, Antonowicz-Juchniewicz J. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: a preliminary study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5317-24. [PMID: 20805001 DOI: 10.1016/j.scitotenv.2010.07.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 05/18/2023]
Abstract
The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.
Collapse
Affiliation(s)
- Barbara Kossowska
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida 44a, 50-345 Wrocław, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wetterhall M, Zuberovic A, Hanrieder J, Bergquist J. Assessment of the partitioning capacity of high abundant proteins in human cerebrospinal fluid using affinity and immunoaffinity subtraction spin columns. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1519-30. [PMID: 20444656 DOI: 10.1016/j.jchromb.2010.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 11/18/2022]
Abstract
The performance of three different affinity and immunoaffinity subtraction spin columns was investigated for the removal of the most abundant proteins in human cerebrospinal fluid (CSF). A pool of human CSF was processed with the spin columns and both the bound and flow through fractions were compared with each other and with intact CSF using 1D gel electrophoresis and nanoLC-MALDI-TOF/TOF-MS analysis. MASCOT MS/MS ionscores were compared before and after processing with the columns. The non-specific co-removal of proteins bound to the high abundant proteins, so called "sponge effect" was also examined for each spin column. The reproducibility of one of the spin columns, ProteomeLab IgY-12 proteome partitioning spin column, was further investigated by isobaric tags for relative and absolute quantification (iTRAQ) labeling and MS/MS analysis. Overall, 173 unique proteins were identified on a 95% MudPIT confidence scoring level. For all three spin columns, the number of proteins identified and their MASCOT scores were increased up to 10 times. The largest degree of non-specific protein removal was observed for a purely affinity based albumin removal column, where 28 other proteins also were present. The ProteomeLab IgY-12 proteome partitioning spin column showed very high reproducibility when combined with iTRAQ labeling and MS/MS analysis. The combined relative standard deviation (R.S.D.) for the high abundant protein removal, iTRAQ labeling and nanoLC-MALDI-TOF/TOF-MS analysis was less than 17.5%.
Collapse
Affiliation(s)
- Magnus Wetterhall
- Department of Physical and Analytical Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
18
|
From Our Sister Journal: Proteomics 22/2008. Proteomics 2008. [DOI: 10.1002/pmic.200890079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Shi M, Caudle WM, Zhang J. Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Dis 2008; 35:157-64. [PMID: 18938247 DOI: 10.1016/j.nbd.2008.09.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/04/2008] [Accepted: 09/14/2008] [Indexed: 11/26/2022] Open
Abstract
Biomarkers for neurodegenerative disorders are essential to facilitate disease diagnosis, ideally at early stages, monitor disease progression, and assess response to existing and future treatments. Application of proteomics to the human brain, cerebrospinal fluid and plasma has greatly hastened the unbiased and high-throughput searches for novel biomarkers. There are many steps critical to biomarker discovery, whether for neurodegenerative or other diseases, including sample preparation, protein/peptide separation and identification, as well as independent confirmation and validation. In this review we have summarized current proteomics technologies involved in discovery of biomarkers for neurodegenerative diseases, practical considerations and limitations of several major aspects, as well as the current status of candidate biomarkers revealed by proteomics for Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Washington School of Medicine, HMC Box 359635, 325 9th Avenue, Seattle, WA 98104, USA
| | | | | |
Collapse
|