1
|
Somatostatin as Inflow Modulator in Liver-transplant Recipients With Severe Portal Hypertension. Ann Surg 2019; 269:1025-1033. [DOI: 10.1097/sla.0000000000003062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6015351. [PMID: 30245775 PMCID: PMC6126071 DOI: 10.1155/2018/6015351] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Oat (Avena sativa) is a cereal known since antiquity as a useful grain with abundant nutritional and health benefits. It contains distinct molecular components with high antioxidant activity, such as tocopherols, tocotrienols, and flavanoids. In addition, it is a unique source of avenanthramides, phenolic amides containing anthranilic acid and hydroxycinnamic acid moieties, and endowed with major beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects. In this review, we report on the biological activities of avenanthramides and their derivatives, including analogs produced in recombinant yeast, with a major focus on the therapeutic potential of these secondary metabolites in the treatment of aging-related human diseases. Moreover, we also present recent advances pointing to avenanthramides as interesting therapeutic candidates for the treatment of cerebral cavernous malformation (CCM) disease, a major cerebrovascular disorder affecting up to 0.5% of the human population. Finally, we highlight the potential of foodomics and redox proteomics approaches in outlining distinctive molecular pathways and redox protein modifications associated with avenanthramide bioactivities in promoting human health and contrasting the onset and progression of various pathologies. The paper is dedicated to the memory of Adelia Frison.
Collapse
|
3
|
Caira S, Iannelli A, Sciarrillo R, Picariello G, Renzone G, Scaloni A, Addeo P. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity. J Enzyme Inhib Med Chem 2017; 32:672-682. [PMID: 28274171 PMCID: PMC6009959 DOI: 10.1080/14756366.2017.1292262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.
Collapse
Affiliation(s)
- Simonetta Caira
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Antonio Iannelli
- b Département de Chirurgie Digestive , Centre Hospitalier Universitarie de Nice , Nice , France
| | - Rosaria Sciarrillo
- c Dipartimento di Scienze e Tecnologie , Università degli Studi del Sannio , Benevento , Italy
| | | | - Giovanni Renzone
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Andrea Scaloni
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Pietro Addeo
- e Service de Chirurgie Hépatique, Pancréatique, Biliaire et Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre , Université de Strasbourg, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| |
Collapse
|
4
|
Zhou L, Wen J, Huang Z, Nice EC, Huang C, Zhang H, Li Q. Redox proteomics screening cellular factors associated with oxidative stress in hepatocarcinogenesis. Proteomics Clin Appl 2016; 11. [PMID: 27763721 DOI: 10.1002/prca.201600089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
Abstract
Liver cancer is a major global health problem being the sixth most common cancer and the third cause of cancer-related death, with hepatocellular carcinoma (HCC) representing more than 90% of primary liver cancers. Mounting evidence suggests that, compared with their normal counterparts, many types of cancer cell have increased levels of ROS. Therefore, cancer cells need to combat high levels of ROS, especially at early stages of tumor development. Recent studies have revealed that ROS-mediated regulation of redox-sensitive proteins (redox sensors) is involved in the pathogenesis and/or progression of many human diseases, including cancer. Unraveling the altered functions of redox sensors and the underlying mechanisms in hepatocarcinogenesis is critical for the development of novel cancer therapeutics. For this reason, redox proteomics has been developed for the high-throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for the treatment of HCC. In this review, we will briefly introduce several novel redox proteomics techniques that are currently available to study various oxidative modifications in hepatocarcinogenesis and summarize the most important discoveries in the study of redox processes related to the development and progression of HCC.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Visiting professor, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Haiyuan Zhang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| | - Qifu Li
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| |
Collapse
|
5
|
Alterations in the redox state and liver damage: hints from the EASL Basic School of Hepatology. J Hepatol 2013; 58:365-74. [PMID: 23023012 DOI: 10.1016/j.jhep.2012.09.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/27/2012] [Accepted: 09/19/2012] [Indexed: 12/19/2022]
Abstract
The importance of a correct balance between oxidative and reductive events has been shown to have a paramount effect on cell function for quite a long time. However, in spite of this body of rapidly growing evidence, the implication of the alteration of the redox state in human disease has been so far much less appreciated. Liver diseases make no exception. Although not fully comprehensive, this article reports what discussed during an EASL Basic School held in 2012 in Trieste, Italy, where the effect of the alteration of the redox state was addressed in different experimental and human models. This translational approach resulted in further stressing the concept that this topic should be expanded in the future not only to better understand how oxidative stress may be linked to a liver damage but also, perhaps more important, how this may be the target for better, more focused treatments. In parallel, understanding how alteration of the redox balance may be associated with liver damage may help define sensitive and ideally early biomarkers of the disorder.
Collapse
|
6
|
Chen HJC, Chen YC. Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking. Anal Chem 2012; 84:7881-90. [PMID: 22958097 DOI: 10.1021/ac301597r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is essential for normal physiology, but excessive production of NO during inflammatory processes can damage the neighboring tissues. Reactive nitrogen oxide species (RNOx), including peroxynitrite (ONOO(-)), are powerful nitrating agents. Biological protein nitration is involved in several disease states, including inflammatory diseases, and it is evident by detection of 3-nitrotyrosine (3NT) in inflamed tissues. In this study, we identified peroxynitrite-induced post-translational modifications (PTMs) in human hemoglobin by accurate mass measurement as well as by the MS(2) and MS(3) spectra. Nitration on Tyr-24, Tyr-42 (α-globin), and Tyr-130 (β-globin) as well as nitrosation on Tyr-24 (α-globin) were identified. Also characterized were oxidation of all three methionine residues, α-Met-32, α-Met-76, and β-Met-55 to the sulfoxide, as well as cysteine oxidation determined as sulfinic acid on α-Cys-104 and sulfonic acid on α-Cys-104, β-Cys-93, and β-Cys-112. These modifications are detected in hemoglobin freshly isolated from human blood and the extents of modifications were semiquantified relative to the reference peptides by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) under the selected reaction monitoring (SRM) mode. The results showed a statistically significant positive correlation between cigarette smoking and the extents of tyrosine nitration at α-Tyr-24 and at α-Tyr-42. To our knowledge, this is the first report on identification and quantification of multiple PTMs in hemoglobin from human blood and association of a specific 3NT-containing peptide with cigarette smoking. This highly sensitive and specific assay only requires hemoglobin isolated from one drop (∼10 μL) of blood. Thus, measurement of these PTMs in hemoglobin might be feasible for assessing nitrative stress in vivo.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Ming-Hsiung, Chia-Yi, Taiwan.
| | | |
Collapse
|
7
|
Simula MP, De Re V. Hepatitis C virus-induced oxidative stress and mitochondrial dysfunction: a focus on recent advances in proteomics. Proteomics Clin Appl 2011; 4:782-93. [PMID: 21137022 DOI: 10.1002/prca.201000049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural history of chronic hepatitis C virus (HCV) infection presents two major aspects. On one side, the illness is by itself benign, whereas, on the other side, epidemiological evidence clearly identifies chronic HCV infection as the principal cause of cirrhosis, hepatocellular carcinoma, and extrahepatic diseases, such as autoimmune type II mixed cryoglobulinemia and some B cell non-Hodgkin's lymphomas. The mechanisms responsible for the progression of liver disease to severe liver injury are still poorly understood. Nonetheless, considerable biological data and studies from animal models suggest that oxidative stress contributes to steatohepatitis and that the increased generation of reactive oxygen and nitrogen species, together with the decreased antioxidant defense, promotes the development of hepatic and extrahepatic complications of HCV infection. The principal mechanisms causing oxidative stress in HCV-positive subjects have only been partially elucidated and have identified chronic inflammation, iron overload, ER stress, and a direct activity of HCV proteins in increasing mitochondrial ROS production, as key events. This review summarizes current knowledge regarding mechanisms of HCV-induced oxidative stress with its long-term effects in the context of HCV-related diseases, and includes a discussion of recent contributions from proteomics studies.
Collapse
Affiliation(s)
- Maria Paola Simula
- Experimental and Clinical Pharmacology Unit, CRO Centro di Riferimento Oncologico, IRCCS National Cancer Institute, AVIANO (PN), Italy
| | | |
Collapse
|
8
|
Marí M, Colell A, Morales A, von Montfort C, Garcia-Ruiz C, Fernández-Checa JC. Redox control of liver function in health and disease. Antioxid Redox Signal 2010; 12:1295-331. [PMID: 19803748 PMCID: PMC2864660 DOI: 10.1089/ars.2009.2634] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS), a heterogeneous population of biologically active intermediates, are generated as by-products of the aerobic metabolism and exhibit a dual role in biology. When produced in controlled conditions and in limited quantities, ROS may function as signaling intermediates, contributing to critical cellular functions such as proliferation, differentiation, and cell survival. However, ROS overgeneration and, particularly, the formation of specific reactive species, inflicts cell death and tissue damage by targeting vital cellular components such as DNA, lipids, and proteins, thus arising as key players in disease pathogenesis. Given the predominant role of hepatocytes in biotransformation and metabolism of xenobiotics, ROS production constitutes an important burden in liver physiology and pathophysiology and hence in the progression of liver diseases. Despite the recognized role of ROS in disease pathogenesis, the efficacy of antioxidants as therapeutics has been limited. A better understanding of the mechanisms, nature, and location of ROS generation, as well as the optimization of cellular defense strategies, may pave the way for a brighter future for antioxidants and ROS scavengers in the therapy of liver diseases.
Collapse
Affiliation(s)
- Montserrat Marí
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
9
|
From Our Sister Journal: Proteomics 6/2009. Proteomics 2009. [DOI: 10.1002/pmic.200990018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|