1
|
Machnicka B, Czogalla A, Bogusławska DM, Stasiak P, Sikorski AF. Spherocytosis-Related L1340P Mutation in Ankyrin Affects Its Interactions with Spectrin. Life (Basel) 2023; 13:151. [PMID: 36676098 PMCID: PMC9864249 DOI: 10.3390/life13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Previously, we reported a new missense mutation in the ANK1 gene that correlated with the hereditary spherocytosis phenotype. This mutation, resulting in L1340P substitution (HGMD CM149731), likely leads to the changes in the conformation of the ankyrin ZZUD domain important for ankyrin binding to spectrin. Here, we report the molecular and physiological effects of this mutation. First, we assessed the binding activity of human β-spectrin to the mutated ZZUDL1340P domain of ankyrin using two different experimental approaches-the study of association and dissociation responses of the spectrin-ankyrin binding domain and a sedimentation assay. In addition, we documented the changes in morphology caused by the overexpressed ankyrin ZZUD domain in human cell models. Our results prove the key role of the L1340 aa residue for the correct alignment of the ZZUD domain of ankyrin, which results in binding the latter with spectrin within the erythrocyte membrane. Replacing L1340 with a proline residue disrupts the spectrin-binding activity of ankyrin.
Collapse
Affiliation(s)
- Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Góra, 1 Prof. Z. Szafrana St., 65-516 Zielona Góra, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 14a F. Joliot-Curie St., 50-383 Wrocław, Poland
| | - Dżamila M. Bogusławska
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Góra, 1 Prof. Z. Szafrana St., 65-516 Zielona Góra, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, 73a Kamieńskiego St., 51-154 Wrocław, Poland
| |
Collapse
|
2
|
Ciepiela O. Old and new insights into the diagnosis of hereditary spherocytosis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:339. [PMID: 30306078 DOI: 10.21037/atm.2018.07.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hereditary spherocytosis (HS) belongs to the group of congenital hemolytic anemias resulting from plasma membrane protein deficiency. When diagnosed too late, HS bares the risk of long-term complications including gall stones and severe anemia. Here, there are discussed advances in HS screening and diagnostics, with a particular focus on methodologies, most of which are available in clinical laboratories worldwide.
Collapse
Affiliation(s)
- Olga Ciepiela
- Department of Laboratory Diagnostics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Black VL, Heesom K, Whittington F, Davis S, Tasker S, Adamantos S, Davidson AD. Assessment of the red blood cell proteome in a dog with unexplained hemolytic anemia. Vet Clin Pathol 2018; 47:377-385. [PMID: 30024644 DOI: 10.1111/vcp.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 7-year-old female neutered Jack Russell Terrier was presented to Langford Vets, the University of Bristol, with a history of chronic intermittent lethargy. Investigations and clinical course were compatible with hereditary hemolysis due to a red blood cell membrane defect. Proteomics was used to explore protein alterations in the presence of a hypothesized red blood cell membrane protein deficiency. Proteomic analysis revealed downregulation of the band 3, and alpha- and beta-adducin proteins, and alterations in the red blood cell proteome consistent with previous reports of changes due to the presence of reticulocytosis and ongoing hemolysis. The spectrum of protein alterations identified in the affected dog may be homologous to a band 3 protein deficiency secondary to hereditary spherocytosis, as described in people.
Collapse
Affiliation(s)
- Victoria L Black
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Kate Heesom
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Fran Whittington
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Sean Davis
- School of Chemistry, University of Bristol, Bristol, UK
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Sophie Adamantos
- Langford Veterinary Services, University of Bristol, Langford, Bristol, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Shin S, Jang W, Kim M, Kim Y, Park SY, Park J, Yang YJ. Targeted next-generation sequencing identifies a novel nonsense mutation in SPTB for hereditary spherocytosis: A case report of a Korean family. Medicine (Baltimore) 2018; 97:e9677. [PMID: 29505016 PMCID: PMC5779785 DOI: 10.1097/md.0000000000009677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Hereditary spherocytosis (HS) is an inherited disorder characterized by the presence of spherical-shaped red blood cells (RBCs) on the peripheral blood (PB) smear. To date, a number of mutations in 5 genes have been identified and the mutations in SPTB gene account for about 20% patients. PATIENT CONCERNS A 65-year-old female had been diagnosed as hemolytic anemia 30 years ago, based on a history of persistent anemia and hyperbilirubinemia for several years. She received RBC transfusion several times and a cholecystectomy roughly 20 years ago before. Round, densely staining spherical-shaped erythrocytes (spherocytes) were frequently found on the PB smear. Numerous spherocytes were frequently found in the PB smears of symptomatic family members, her 3rd son and his 2 grandchildren. DIAGNOSIS One heterozygous mutation of SPTB was identified by targeted next-generation sequencing (NGS). The nonsense mutation, c.1956G>A (p.Trp652*), in exon 13 was confirmed by Sanger sequencing and thus the proband was diagnosed with HS. INTERVENTIONS The proband underwent a splenectomy due to transfusion-refractory anemia and splenomegaly. OUTCOMES After the splenectomy, her hemoglobin level improved to normal range (14.1 g/dL) and her bilirubin levels decreased dramatically (total bilirubin 1.9 mg/dL; direct bilirubin 0.6 mg/dL). LESSONS We suggest that NGS of causative genes could be a useful diagnostic tool for the genetically heterogeneous RBC membrane disorders, especially in cases with a mild or atypical clinical manifestation.
Collapse
Affiliation(s)
- Soyoung Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea
| | - Woori Jang
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea
| | - Suk Young Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea
| | - Young Jun Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chu TTT, Sinha A, Malleret B, Suwanarusk R, Park JE, Naidu R, Das R, Dutta B, Ong ST, Verma NK, Chan JK, Nosten F, Rénia L, Sze SK, Russell B, Chandramohanadas R. Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol 2017; 180:118-133. [PMID: 29094334 DOI: 10.1111/bjh.14976] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/22/2017] [Indexed: 02/03/2023]
Abstract
Erythropoiesis is marked by progressive changes in morphological, biochemical and mechanical properties of erythroid precursors to generate red blood cells (RBC). The earliest enucleated forms derived in this process, known as reticulocytes, are multi-lobular and spherical. As reticulocytes mature, they undergo a series of dynamic cytoskeletal re-arrangements and the expulsion of residual organelles, resulting in highly deformable biconcave RBCs (normocytes). To understand the significant, yet neglected proteome-wide changes associated with reticulocyte maturation, we undertook a quantitative proteomics approach. Immature reticulocytes (marked by the presence of surface transferrin receptor, CD71) and mature RBCs (devoid of CD71) were isolated from human cord blood using a magnetic separation procedure. After sub-fractionation into triton-extracted membrane proteins and luminal samples (isobaric tags for relative and absolute quantitation), quantitative mass spectrometry was conducted to identify more than 1800 proteins with good confidence and coverage. While most structural proteins (such as Spectrins, Ankyrin and Band 3) as well as surface glycoproteins were conserved, proteins associated with microtubule structures, such as Talin-1/2 and ß-Tubulin, were detected only in immature reticulocytes. Atomic force microscopy (AFM)-based imaging revealed an extended network of spectrin filaments in reticulocytes (with an average length of 48 nm), which shortened during reticulocyte maturation (average spectrin length of 41 nm in normocytes). The extended nature of cytoskeletal network may partly account for increased deformability and shape changes, as reticulocytes transform to normocytes.
Collapse
Affiliation(s)
- Trang T T Chu
- Pillar of Engineering Product Development (EPD), Singapore University of Technology & Design (SUTD), Singapore
| | - Ameya Sinha
- Pillar of Engineering Product Development (EPD), Singapore University of Technology & Design (SUTD), Singapore
| | - Benoit Malleret
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency for Science & Technology, Singapore
| | - Rossarin Suwanarusk
- Singapore Immunology Network (SIgN), Agency for Science & Technology, Singapore
| | - Jung E Park
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Renugah Naidu
- Pillar of Engineering Product Development (EPD), Singapore University of Technology & Design (SUTD), Singapore
| | - Rupambika Das
- Pillar of Engineering Product Development (EPD), Singapore University of Technology & Design (SUTD), Singapore
| | - Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jerry K Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, UK
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science & Technology, Singapore
| | - Siu K Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bruce Russell
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Microbiology and Immunology, Otago University, Dunedin, New Zealand
| | - Rajesh Chandramohanadas
- Pillar of Engineering Product Development (EPD), Singapore University of Technology & Design (SUTD), Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
6
|
Chakrabarti A, Halder S, Karmakar S. Erythrocyte and platelet proteomics in hematological disorders. Proteomics Clin Appl 2016; 10:403-14. [PMID: 26611378 DOI: 10.1002/prca.201500080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
Erythrocytes undergo ineffective erythropoesis, hemolysis, and premature eryptosis in sickle cell disease and thalassemia. Abnormal hemoglobin variants associated with hemoglobinopathy lead to vesiculation, membrane instability, and loss of membrane asymmetry with exposal of phosphatidylserine. This potentiates thrombin generation resulting in activation of the coagulation cascade responsible for subclinical phenotypes. Platelet activation also results in the release of microparticles, which express and transfer functional receptors from platelet membrane, playing key roles in vascular reactivity and activation of intracellular signaling pathways. Over the last decade, proteomics had proven to be an important field of research in studies of blood and blood diseases. Blood cells and its fluidic components have been proven to be easy systems for studying differential expressions of proteins in hematological diseases encompassing hemoglobinopathies, different types of anemias, myeloproliferative disorders, and coagulopathies. Proteomic studies of erythrocytes and platelets reported from several groups have highlighted various factors that intersect the signaling networks in these anucleate systems. In this review, we have elaborated on the current scenario of anucleate blood cell proteomes in normal and diseased individuals and the cross-talk between the two major constituent cell types of circulating blood.
Collapse
Affiliation(s)
- Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Suchismita Halder
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Shilpita Karmakar
- Biophysics and Structural Genomics Division, Saha institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
7
|
Defects in Erythrocyte Membrane Skeletal Architecture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:41-59. [DOI: 10.1007/978-3-319-11280-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Barasa B, Slijper M. Challenges for red blood cell biomarker discovery through proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:1003-10. [PMID: 24129076 DOI: 10.1016/j.bbapap.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/11/2013] [Accepted: 10/01/2013] [Indexed: 12/23/2022]
Abstract
Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. This makes RBCs highly sensitive to any aberration. If so, these RBCs are quickly removed from circulation, but if the RBC levels reduce extremely fast, this results in hemolytic anemia. Several causes of HA exist, and proteome analysis is the most straightforward way to obtain deeper insight into RBC functioning under the stress of disease. This should result in discovery of biomarkers, typical for each source of anemia. In this review, several challenges to generate in-depth RBC proteomes are described, like to obtain pure RBCs, to overcome the wide dynamic range in protein expression, and to establish which of the identified/quantified proteins are active in RBCs. The final challenge is to acquire and validate suited biomarkers unique for the changes that occur for each of the clinical questions; in red blood cell aging (also important for transfusion medicine), for thalassemias or sickle cell disease. Biomarkers for other hemolytic anemias that are caused by dysfunction of RBC membrane proteins (the RBC membrane defects) or RBC cytosolic proteins (the enzymopathies) are sometimes even harder to discover, in particular for the patients with RBC rare diseases with unknown cause. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Benjamin Barasa
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, The Netherlands
| | - Monique Slijper
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, The Netherlands.
| |
Collapse
|
9
|
Goodman SR, Daescu O, Kakhniashvili DG, Zivanic M. The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 2013; 238:509-18. [DOI: 10.1177/1535370213488474] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this minireview, we focus on advances in our knowledge of the human erythrocyte proteome and interactome that have occurred since our seminal review on the topic published in 2007. As will be explained, the number of unique proteins has grown from 751 in 2007 to 2289 as of today. We describe how proteomics and interactomics tools have been used to probe critical protein changes in disorders impacting the blood. The primary example used is the work done on sickle cell disease where biomarkers of severity have been identified, protein changes in the erythrocyte membranes identified, pharmacoproteomic impact of hydroxyurea studied and interactomics used to identify erythrocyte protein changes that are predicted to have the greatest impact on protein interaction networks.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ovidiu Daescu
- Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David G Kakhniashvili
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Marko Zivanic
- Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
10
|
Jauchem JR, Bernhard JA, Cerna CZ, Lim TY, Seaman RL, Tarango M. Effects of a TASER® conducted energy weapon on the circulating red-blood-cell population and other factors in Sus scrofa. Forensic Sci Med Pathol 2013; 9:308-20. [PMID: 23543463 DOI: 10.1007/s12024-013-9423-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
In previous studies hematocrit has been consistently increased in an anesthetized animal model after exposures to TASER(®) conducted energy weapons (CEWs). In the present study we analyzed changes in blood cell counts and red blood cell membrane proteins following two 30-s applications of a TASER C2 device (which is designed for civilian use). Hematocrit increased significantly from 33.2 ± 2.4 (mean ± SD) to 42.8 ± 4.6 % immediately after CEW exposure of eleven pigs (Sus scrofa). Red blood cell count increased significantly from 6.10 ± 0.55 × 10(12)/L to 7.45 ± 0.94 × 10(12)/L, and mean corpuscular volume increased significantly from 54.5 ± 2.4 fl to 57.8 ± 2.6 fl. Mean corpuscular hemoglobin concentration decreased significantly from 20.5 ± 0.7 to 18.5 ± 0.6 mM. Thirty protein spots (from two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, selected for detailed comparison) exhibited greater densities 30-min post-exposure compared with pre-exposure values. A greater number of echinocytes were observed following CEW exposure. On the basis of these results it appears that, during the strong muscle contractions produced by TASER CEWs, a specific population of red blood cells (RBCs) may be released from the spleen or other reservoirs within the body. The total time of CEW exposure in the present study was relatively long compared with exposures in common law-enforcement scenarios. Despite statistically significant changes in red blood cell counts (and other measures directly related to RBCs), the alterations were short-lived. The transient nature of the changes would be likely to counteract any potentially detrimental effects.
Collapse
Affiliation(s)
- James R Jauchem
- Bio-Effects Division, Human Effectiveness Directorate, 711th Human Performance Wing, U.S. Air Force Research Laboratory, Fort Sam Houston, TX 78234, USA.
| | | | | | | | | | | |
Collapse
|