1
|
Knecht S, Eberl HC, Kreisz N, Ugwu UJ, Starikova T, Kuster B, Wilhelm S. An Introduction to Analytical Challenges, Approaches, and Applications in Mass Spectrometry-Based Secretomics. Mol Cell Proteomics 2023; 22:100636. [PMID: 37597723 PMCID: PMC10518356 DOI: 10.1016/j.mcpro.2023.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The active release of proteins into the extracellular space and the proteolytic cleavage of cell surface proteins are key processes that coordinate and fine-tune a multitude of physiological functions. The entirety of proteins that fulfill these extracellular tasks are referred to as the secretome and are of special interest for the investigation of biomarkers of disease states and physiological processes related to cell-cell communication. LC-MS-based proteomics approaches are a valuable tool for the comprehensive and unbiased characterization of this important subproteome. This review discusses procedures, opportunities, and limitations of mass spectrometry-based secretomics to better understand and navigate the complex analytical landscape for studying protein secretion in biomedical science.
Collapse
Affiliation(s)
- Sascha Knecht
- Omics Sciences, Genomic Sciences, GlaxoSmithKline, Heidelberg, Germany; Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - H Christian Eberl
- Omics Sciences, Genomic Sciences, GlaxoSmithKline, Heidelberg, Germany
| | - Norbert Kreisz
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Ukamaka Juliet Ugwu
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Tatiana Starikova
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Wang C, Zhang S, Liu J, Tian Y, Ma B, Xu S, Fu Y, Luo Y. Secreted Pyruvate Kinase M2 Promotes Lung Cancer Metastasis through Activating the Integrin Beta1/FAK Signaling Pathway. Cell Rep 2020; 30:1780-1797.e6. [PMID: 32049010 DOI: 10.1016/j.celrep.2020.01.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/01/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer cell-derived secretomes have been documented to play critical roles in cancer progression. Intriguingly, alternative extracellular roles of intracellular proteins are involved in various steps of tumor progression, which can offer strategies to fight cancer. Herein, we identify lung cancer progression-associated secretome signatures using mass spectrometry analysis. Among them, PKM2 is verified to be highly expressed and secreted in lung cancer cells and clinical samples. Functional analyses demonstrates that secreted PKM2 facilitates tumor metastasis. Furthermore, mass spectrometry analysis and functional validation identify integrin β1 as a receptor of secreted PKM2. Mechanistically, secreted PKM2 directly bound to integrin β1 and subsequently activated the FAK/SRC/ERK axis to promote tumor metastasis. Collectively, our findings suggest that PKM2 is a potential serum biomarker for diagnosing lung cancer and that targeting the secreted PKM2-integrin β1 axis can inhibit lung cancer development, which provides evidence of a potential therapeutic strategy in lung cancer.
Collapse
Affiliation(s)
- Caihong Wang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Shaosen Zhang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jie Liu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Boyuan Ma
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Siran Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Clinical Implications of Extracellular HMGA1 in Breast Cancer. Int J Mol Sci 2019; 20:ijms20235950. [PMID: 31779212 PMCID: PMC6928815 DOI: 10.3390/ijms20235950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The unconventional secretion of proteins is generally caused by cellular stress. During the tumorigenesis, tumor cells experience high levels of stress, and the secretion of some theoretically intracellular proteins is activated. Once in the extracellular space, these proteins play different paracrine and autocrine roles and could represent a vulnerability of cancer. One of these proteins is the high mobility group A1 (HMGA1), which is frequently overexpressed in tumors and presents a low expression in normal adult tissues. We have recently described that HMGA1 establishes an autocrine loop in invasive triple-negative breast cancer (TNBC) cells. The secretion of HMGA1 and its binding to the receptor for advanced glycation end products (RAGE) mediates the migration, invasion, and metastasis of TNBC cells and predicts the onset of metastasis in these patients. In this review, we summarized different strategies to exploit the novel tumorigenic phenotype mediated by extracellular HMGA1. We envisioned future clinical applications where the association between its change in subcellular localization and breast cancer progression could be used to predict tumor aggressiveness and guide treatment decisions. Furthermore, we proposed that targeting extracellular HMGA1 as monotherapy using monoclonal antibodies, or in combination with chemotherapy and other targeted therapies, could bring new therapeutic options for TNBC patients.
Collapse
|
4
|
da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P, Tajara EH. Cellular Interactions in the Tumor Microenvironment: The Role of Secretome. J Cancer 2019; 10:4574-4587. [PMID: 31528221 PMCID: PMC6746126 DOI: 10.7150/jca.21780] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past years, it has become evident that cancer initiation and progression depends on several components of the tumor microenvironment, including inflammatory and immune cells, fibroblasts, endothelial cells, adipocytes, and extracellular matrix. These components of the tumor microenvironment and the neoplastic cells interact with each other providing pro and antitumor signals. The tumor-stroma communication occurs directly between cells or via a variety of molecules secreted, such as growth factors, cytokines, chemokines and microRNAs. This secretome, which derives not only from tumor cells but also from cancer-associated stromal cells, is an important source of key regulators of the tumorigenic process. Their screening and characterization could provide useful biomarkers to improve cancer diagnosis, prognosis, and monitoring of treatment responses.
Collapse
Affiliation(s)
- Bianca Rodrigues da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Célia Domingos
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Gambelas, Faro, Portugal
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| |
Collapse
|
5
|
He Y, Mohamedali A, Huang C, Baker MS, Nice EC. Oncoproteomics: Current status and future opportunities. Clin Chim Acta 2019; 495:611-624. [PMID: 31176645 DOI: 10.1016/j.cca.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Oncoproteomics is the systematic study of cancer samples using omics technologies to detect changes implicated in tumorigenesis. Recent progress in oncoproteomics is already opening new avenues for the identification of novel biomarkers for early clinical stage cancer detection, targeted molecular therapies, disease monitoring, and drug development. Such information will lead to new understandings of cancer biology and impact dramatically on the future care of cancer patients. In this review, we will summarize the advantages and limitations of the key technologies used in (onco)proteogenomics, (the Omics Pipeline), explain how they can assist us in understanding the biology behind the overarching "Hallmarks of Cancer", discuss how they can advance the development of precision/personalised medicine and the future directions in the field.
Collapse
Affiliation(s)
- Yujia He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Abidali Mohamedali
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, New South Wales 2109, Australia
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia.
| | - Edouard C Nice
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| |
Collapse
|
6
|
Böttger F, Schaaij-Visser TB, de Reus I, Piersma SR, Pham TV, Nagel R, Brakenhoff RH, Thunnissen E, Smit EF, Jimenez CR. Proteome analysis of non-small cell lung cancer cell line secretomes and patient sputum reveals biofluid biomarker candidates for cisplatin response prediction. J Proteomics 2019; 196:106-119. [DOI: 10.1016/j.jprot.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
|
7
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
|
9
|
Méndez O, Peg V, Salvans C, Pujals M, Fernández Y, Abasolo I, Pérez J, Matres A, Valeri M, Gregori J, Villarreal L, Schwartz S, Ramon Y Cajal S, Tabernero J, Cortés J, Arribas J, Villanueva J. Extracellular HMGA1 Promotes Tumor Invasion and Metastasis in Triple-Negative Breast Cancer. Clin Cancer Res 2018; 24:6367-6382. [PMID: 30135148 DOI: 10.1158/1078-0432.ccr-18-0517] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The study of the cancer secretome suggests that a fraction of the intracellular proteome could play unanticipated roles in the extracellular space during tumorigenesis. A project aimed at investigating the invasive secretome led us to study the alternative extracellular function of the nuclear protein high mobility group A1 (HMGA1) in breast cancer invasion and metastasis. EXPERIMENTAL DESIGN Antibodies against HMGA1 were tested in signaling, adhesion, migration, invasion, and metastasis assays using breast cancer cell lines and xenograft models. Fluorescence microscopy was used to determine the subcellular localization of HMGA1 in cell lines, xenograft, and patient-derived xenograft models. A cohort of triple-negative breast cancer (TNBC) patients was used to study the correlation between subcellular localization of HMGA1 and the incidence of metastasis. RESULTS Our data show that treatment of invasive cells with HMGA1-blocking antibodies in the extracellular space impairs their migration and invasion abilities. We also prove that extracellular HMGA1 (eHMGA1) becomes a ligand for the Advanced glycosylation end product-specific receptor (RAGE), inducing pERK signaling and increasing migration and invasion. Using the cytoplasmic localization of HMGA1 as a surrogate marker of secretion, we showed that eHMGA1 correlates with the incidence of metastasis in a cohort of TNBC patients. Furthermore, we show that HMGA1 is enriched in the cytoplasm of tumor cells at the invasive front of primary tumors and in metastatic lesions in xenograft models. CONCLUSIONS Our results strongly suggest that eHMGA1 could become a novel drug target in metastatic TNBC and a biomarker predicting the onset of distant metastasis.
Collapse
Affiliation(s)
- Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vicente Peg
- Pathology Department, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Cándida Salvans
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Yolanda Fernández
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ibane Abasolo
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - José Pérez
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ana Matres
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Valeri
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Josep Gregori
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | | | - Simó Schwartz
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | | | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain.,CIBERONC, Madrid, Spain
| | - Javier Cortés
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
10
|
Papaleo E, Gromova I, Gromov P. Gaining insights into cancer biology through exploration of the cancer secretome using proteomic and bioinformatic tools. Expert Rev Proteomics 2017; 14:1021-1035. [PMID: 28967788 DOI: 10.1080/14789450.2017.1387053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Tumor-associated proteins released by cancer cells and by tumor stroma cells, referred as 'cancer secretome', represent a valuable resource for discovery of potential cancer biomarkers. The last decade was marked by a great increase in number of studies focused on various aspects of cancer secretome including, composition and identification of components externalized by malignant cells and by the components of tumor microenvironment. Areas covered: Here, we provide an overview of achievements in the proteomic analysis of the cancer secretome, elicited through the tumor-associated interstitial fluid recovered from malignant tissues ex vivo or the protein component of conditioned media obtained from cultured cancer cells in vitro. We summarize various bioinformatic tools and approaches and critically appraise their outcomes, focusing on problems and challenges that arise when applied for the analysis of cancer secretomic databases. Expert commentary: Recent achievements in the omics- analysis of structural and metabolic aspects of altered cancer secretome contribute greatly to the various hallmarks of cancer including the identification of clinically significant biomarkers and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Papaleo
- a Danish Cancer Society Research Center, Computational Biology Laboratory , Copenhagen , Denmark
| | - Irina Gromova
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| | - Pavel Gromov
- b Danish Cancer Society Research Center, Genome Integrity Unit, Breast Cancer Biology Group , Copenhagen , Denmark
| |
Collapse
|
11
|
Brandi J, Manfredi M, Speziali G, Gosetti F, Marengo E, Cecconi D. Proteomic approaches to decipher cancer cell secretome. Semin Cell Dev Biol 2017; 78:93-101. [PMID: 28684183 DOI: 10.1016/j.semcdb.2017.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/17/2023]
Abstract
In this review, we give an overview of the actual proteomic approaches used in the study of cancer cells secretome. In particular, we describe the proteomic strategies to decipher cancer cell secretome initially focusing on the different aspects of sample preparation. We examine the issues related to the presence of low abundant proteins, the analysis of secreted proteins in the conditioned media with or without the removal of fetal bovine serum and strategies developed to reduce intracellular protein contamination. As regards the identification and quantification of secreted proteins, we described the different proteomic approaches used, i.e. gel-based, MS-based (label-based and label-free), and the antibody and array-based methods, together with some of the most recent applications in the field of cancer research. Moreover, we describe the bioinformatics tools developed for the in silico validation and characterization of cancer cells secretome. We also discuss the most important available tools for protein annotation and for prediction of classical and non-classical secreted proteins. In summary in this review advances, concerns and challenges in the field of cancer secretome analysis are discussed.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy; ISALIT S.r.l., Novara, Italy.
| | - Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| | - Fabio Gosetti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Lab, University of Verona, Strada le Grazie 15, 37135, Verona, Italy
| |
Collapse
|
12
|
Identification of Filamin-A and -B as potential biomarkers for prostate cancer. Future Sci OA 2016; 3:FSO161. [PMID: 28344825 PMCID: PMC5351499 DOI: 10.4155/fsoa-2016-0065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Aim: A novel strategy for prostate cancer (PrCa) biomarker discovery is described. Materials & methods: In vitro perturbation biology, proteomics and Bayesian causal analysis identified biomarkers that were validated in in vitro models and clinical specimens. Results: Filamin-B (FLNB) and Keratin-19 were identified as biomarkers. Filamin-A (FLNA) was found to be causally linked to FLNB. Characterization of the biomarkers in a panel of cells revealed differential mRNA expression and regulation. Moreover, FLNA and FLNB were detected in the conditioned media of cells. Last, in patients without PrCa, FLNA and FLNB blood levels were positively correlated, while in patients with adenocarcinoma the relationship is dysregulated. Conclusion: These data support the strategy and the potential use of the biomarkers for PrCa. The goal of this study was to use a novel strategy that combines biological outputs with Bayesian network learning to identify potential biomarkers for prostate cancer (PrCa). This methodology identified two proteins, filamin B and keratin-19, as potential biomarkers for PrCa. The network map also identified a direct linkage between filamin B and filamin A, which is a protein that has previously been identified as playing a role in PrCa etiology. The identified proteins were then validated by examining their levels in a panel of PrCa cell lines and in human plasma samples.
Collapse
|
13
|
Chen Z, Kim J. Urinary proteomics and metabolomics studies to monitor bladder health and urological diseases. BMC Urol 2016; 16:11. [PMID: 27000794 PMCID: PMC4802825 DOI: 10.1186/s12894-016-0129-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
Background Assays of molecular biomarkers in urine are non-invasive compared to other body fluids and can be easily repeated. Based on the hypothesis that the secreted markers from the diseased organs may locally release into the body fluid in the vicinity of the injury, urine-based assays have been considered beneficial to monitoring bladder health and urological diseases. The urine proteome is much less complex than the serum and tissues, but nevertheless can contain biomarkers for diagnosis and prognosis of diseases. The urine metabolome has a much higher number and concentration of low-molecular metabolites than the serum or tissues, with a far lower lipid concentration, yet informs directly about dietary and microbial metabolism. Discussion We here discuss the use of mass spectrometry-based proteomics and metabolomics for urine biomarker assays, specifically with respect to the underlying mechanisms that trigger the pathological condition. Conclusion Molecular biomarker profiles, based on proteomics and metabolomics studies, reliably distinguish patients from healthy controls, stratify sub-populations with respect to treatment options, and predict therapeutic response of patients with urological disease.
Collapse
Affiliation(s)
- Zhaohui Chen
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Zhou L, Li Q, Wang J, Huang C, Nice EC. Oncoproteomics: Trials and tribulations. Proteomics Clin Appl 2015; 10:516-31. [PMID: 26518147 DOI: 10.1002/prca.201500081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/19/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Qifu Li
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Jiandong Wang
- Department of Biomedical; Chengdu Medical College; Chengdu Sichuan Province P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
| | - Edouard C. Nice
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|