1
|
Jan N, Bostanudin MF, Moutraji SA, Kremesh S, Kamal Z, Hanif MF. Unleashing the biomimetic targeting potential of platelet-derived nanocarriers on atherosclerosis. Colloids Surf B Biointerfaces 2024; 240:113979. [PMID: 38823339 DOI: 10.1016/j.colsurfb.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Atherosclerosis, the primary mechanism underlying the development of many cardiovascular illnesses, continues to be one of the leading causes of mortality worldwide. Platelet (PLT), which are essential for maintaining body homeostasis, have been strongly linked to the onset of atherosclerosis at various stages due to their inherent tendency to bind to atherosclerotic lesions and show an affinity for plaques. Therefore, mimicking PLT's innate adhesive features may be necessary to effectively target plaques. PLT-derived nanocarriers have emerged as a promising biomimetic targeting strategy for treating atherosclerosis due to their numerous advantages. These advantages include excellent biocompatibility, minimal macrophage phagocytosis, prolonged circulation time, targeting capability for impaired vascular sites, and suitability as carriers for anti-atherosclerotic drugs. Herein, we discuss the role of PLT in atherogenesis and propose the design of nanocarriers based on PLT-membrane coating and PLT-derived vesicles. These nanocarriers can target multiple biological elements relevant to plaque development. The review also emphasizes the current challenges and future research directions for the effective utilization of PLT-derived nanocarriers in treating atherosclerosis.
Collapse
Affiliation(s)
- Nasrullah Jan
- Department of Pharmacy, The University of Chenab, Gujrat 50700, Punjab, Pakistan.
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedq A Moutraji
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Bahawalpur College of Pharmacy, BMDC Complex Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
2
|
Rosa Teixeira-Alves L, Guimarães-Nobre CC, Mendonça-Reis E, Miranda-Alves L, Berto-Junior C. Bosentan attenuates sickle cell disease erythrocyte HbS polymerization and impaired deformability induced by endothelin-1. Can J Physiol Pharmacol 2023; 101:642-651. [PMID: 36821840 DOI: 10.1139/cjpp-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The effects of endothelin-1 (ET-1) on erythrocytes from sickle cell disease (SCD) patients have been described, but mechanisms of ET-1 regarding primary erythrocyte functions remain unknown. ET-1 is a vasoconstrictor peptide produced by endothelial cells, and the expression of ET-1 is increased in SCD. The present study used ex vivo experiments with sickle cell erythrocytes, ET-1, and bosentan, a dual antagonist of ETA and ETB receptors. We performed a hemoglobin S (HbS) polymerization assay with three concentrations of ET-1 (1, 20, and 50 pg/mL) and bosentan (100 nmol/L). ET-1 increased HbS polymerization at all concentrations, and this effect was suppressed by bosentan. For the deformability assay, red blood cells (RBCs) were incubated on a Sephacryl column with the same concentrations of ET-1 and bosentan. ET-1 decreased deformability, and this effect was reversed by bosentan. To observe erythrocyte adhesion, ET-1 and bosentan were incubated with RBCs in thrombospondin-coated 96-well plate, which demonstrated that ET-1 decreased adhesion but that bosentan enhanced adhesion. We also assessed erythrocyte apoptosis and observed decreased eryptosis induced by ET-1, and these effects were inhibited bosentan. Thus, these findings demonstrated that ET-1 modulates HbS polymerization, erythrocyte deformability, adhesion to thrombospondin, and eryptosis, and these effects were suppressed or enhanced by bosentan.
Collapse
Affiliation(s)
- Lyzes Rosa Teixeira-Alves
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Camila Cristina Guimarães-Nobre
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Evelyn Mendonça-Reis
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Clemilson Berto-Junior
- Grupo de Pesquisa em Fisiologia Eritróide-GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil
| |
Collapse
|
3
|
Dai Z, Zhao T, Song N, Pan K, Yang Y, Zhu X, Chen P, Zhang J, Xia C. Platelets and platelet extracellular vesicles in drug delivery therapy: A review of the current status and future prospects. Front Pharmacol 2022; 13:1026386. [PMID: 36330089 PMCID: PMC9623298 DOI: 10.3389/fphar.2022.1026386] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are blood cells that are primarily produced by the shedding of megakaryocytes in the bone marrow. Platelets participate in a variety of physiological and pathological processes in vivo, including hemostasis, thrombosis, immune-inflammation, tumor progression, and metastasis. Platelets have been widely used for targeted drug delivery therapies for treating various inflammatory and tumor-related diseases. Compared to other drug-loaded treatments, drug-loaded platelets have better targeting, superior biocompatibility, and lower immunogenicity. Drug-loaded platelet therapies include platelet membrane coating, platelet engineering, and biomimetic platelets. Recent studies have indicated that platelet extracellular vesicles (PEVs) may have more advantages compared with traditional drug-loaded platelets. PEVs are the most abundant vesicles in the blood and exhibit many of the functional characteristics of platelets. Notably, PEVs have excellent biological efficacy, which facilitates the therapeutic benefits of targeted drug delivery. This article provides a summary of platelet and PEVs biology and discusses their relationships with diseases. In addition, we describe the preparation, drug-loaded methods, and specific advantages of platelets and PEVs targeted drug delivery therapies for treating inflammation and tumors. We summarize the hot spots analysis of scientific articles on PEVs and provide a research trend, which aims to give a unique insight into the development of PEVs research focus.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Nan Song
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Chen Xia
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| |
Collapse
|
4
|
Bigdelou P, Farnoud AM. Induction of Eryptosis in Red Blood Cells Using a Calcium Ionophore. J Vis Exp 2020. [PMID: 32065143 DOI: 10.3791/60659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eryptosis, erythrocyte programmed cell death, occurs in a number of hematological diseases and during injury to erythrocytes. A hallmark of eryptotic cells is the loss of compositional asymmetry of the cell membrane, leading to the translocation of phosphatidylserine to the membrane outer leaflet. This process is triggered by increased intracellular concentration of Ca2+, which activates scramblase, an enzyme that facilitates bidirectional movement of phospholipids between membrane leaflets. Given the importance of eryptosis in various diseased conditions, there have been efforts to induce eryptosis in vitro. Such efforts have generally relied on the calcium ionophore, ionomycin, to enhance intracellular Ca2+ concentration and induce eryptosis. However, many discrepancies have been reported in the literature regarding the procedure for inducing eryptosis using ionomycin. Herein, we report a step-by-step protocol for ionomycin-induced eryptosis in human erythrocytes. We focus on important steps in the procedure including the ionophore concentration, incubation time, and glucose depletion, and provide representative result. This protocol can be used to reproducibly induce eryptosis in the laboratory.
Collapse
Affiliation(s)
| | - Amir M Farnoud
- Biomedical Engineering Program, Ohio University; Department of Chemical and Biomolecular Engineering, Ohio University;
| |
Collapse
|
5
|
Ben Khaled M, Ouederni M, Mankai Y, Rekaya S, Ben Fraj I, Dhouib N, Kouki R, Mellouli F, Bejaoui M. Prevalence and predictive factors of splenic sequestration crisis among 423 pediatric patients with sickle cell disease in Tunisia. Blood Cells Mol Dis 2019; 80:102374. [PMID: 31670184 DOI: 10.1016/j.bcmd.2019.102374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 01/07/2023]
Abstract
This study was aimed to identify the predictors of splenic sequestration crisis (SSC) among pediatric patients with sickle cell disease (SCD). This prognosis study was carried out in the pediatric immuno-hematology unit, over 20 years (1998 to 2017), enrolling patients with SCD. The cox model was used in multivariate analysis. Among 423 patients with SCD (240 S/S phenotype, 128 S/B0, 30 S/B+, 14 S/O arab and 11 S/C), 150(35.4%) had at least one episode of SSC. The average age of patients at the first episode was 48.3 months ± 32.4(2-168). Recurrence of SSC was observed in 117 patients (78%). Spleen size ≥3 cm at baseline was the strongest predictor of SSC occurrence (HR = 7.27, CI: 4.01-13.20, p = 0.05) and recurrence (HR = 6.37, CI: 1,46-27.83, p = 0.01). Pallor revealing the disease, age at onset of symptoms <24 months and reticulocytosis ≥300,000/mm3 increased the risk of SSC. Pain crisis revealing the disease as well as neutrophilia was associated with a lower risk of SSC. In conclusion, this study confirmed the high prevalence of SSC in SCD and the high frequency of recurrence after a first episode. The SSC occurrence and recurrence were intimately linked to the presence of splenomegaly, chronic pallor revealing the disease as well as reticulocytosis.
Collapse
Affiliation(s)
- Monia Ben Khaled
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia; Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia.
| | - Monia Ouederni
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia; Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Yosra Mankai
- Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Samia Rekaya
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia; Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Ilhem Ben Fraj
- Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Nawel Dhouib
- Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Ridha Kouki
- Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Fethi Mellouli
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia; Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| | - Mohamed Bejaoui
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia; Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center Tunis, Tunis, Tunisia
| |
Collapse
|
6
|
Lang F, Bissinger R, Abed M, Artunc F. Eryptosis - the Neglected Cause of Anemia in End Stage Renal Disease. Kidney Blood Press Res 2017; 42:749-760. [PMID: 29151105 DOI: 10.1159/000484215] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/23/2017] [Indexed: 11/19/2022] Open
Abstract
End stage renal disease (ESRD) invariably leads to anemia which has been mainly attributed to compromised release of erythropoietin from the defective kidneys with subsequent impairment of erythropoiesis. However, erythropoietin replacement only partially reverses anemia pointing to the involvement of additional mechanisms. As shown more recently, anemia of ESRD is indeed in large part a result of accelerated erythrocyte loss due to suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the cell surface. Phosphatidylserine exposing erythrocytes are bound to and engulfed by macrophages and are thus rapidly cleared from circulating blood. If the loss of erythrocytes cannot be fully compensated by enhanced erythropoiesis, stimulation of eryptosis leads to anemia. Eryptotic erythrocytes may further adhere to the vascular wall and thus impair microcirculation. Stimulators of eryptosis include complement, hyperosmotic shock, energy depletion, oxidative stress, and a wide variety of xenobiotics. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, and cyclin-dependent kinase 4. Eryptosis is inhibited by AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and some illdefined tyrosine kinases. In ESRD eryptosis is stimulated at least in part by a plasma component, as it is triggered by exposure of erythrocytes from healthy individuals to plasma from ESRD patients. Several eryptosis-stimulating uremic toxins have been identified, such as vanadate, acrolein, methylglyoxal, indoxyl sulfate, indole-3-acetic acid and phosphate. Attempts to fully reverse anemia in ESRD with excessive stimulation of erythropoiesis enhances the number of circulating suicidal erythrocytes and bears the risk of interference with micocirculation, At least in theory, anemia in ESRD could preferably be treated with replacement of erythropoietin and additional inhibition of eryptosis thus avoiding eryptosis-induced impairment of microcirculation. A variety of eryptosis inhibitors have been identified, their efficacy in ESRD remains, however, to be shown.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rosi Bissinger
- Department of Internal Medicine III, University of Tübingen, Tübingen, Germany
| | - Majed Abed
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
D'Alessandro A, Zolla L. Proteomic analysis of red blood cells and the potential for the clinic: what have we learned so far? Expert Rev Proteomics 2017; 14:243-252. [PMID: 28162022 DOI: 10.1080/14789450.2017.1291347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Red blood cells (RBC) are the most abundant host cells in the human body. Mature erythrocytes are devoid of nuclei and organelles and have always been regarded as circulating 'bags of hemoglobin'. The advent of proteomics has challenged this assumption, revealing unanticipated complexity and novel roles for RBCs not just in gas transport, but also in systemic metabolic homeostasis in health and disease. Areas covered: In this review we will summarize the main advancements in the field of discovery mode and redox/quantitative proteomics with respect to RBC biology. We thus focus on translational/clinical applications, such as transfusion medicine, hematology (e.g. hemoglobinopathies) and personalized medicine. Synergy of omics technologies - especially proteomics and metabolomics - are highlighted as a hallmark of clinical metabolomics applications for the foreseeable future. Expert commentary: The introduction of advanced proteomics technologies, especially quantitative and redox proteomics, and the integration of proteomics data with omics information gathered through orthogonal technologies (especially metabolomics) promise to revolutionize many biomedical areas, from hematology and transfusion medicine to personalized medicine and clinical biochemistry.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Lello Zolla
- b Department of Ecological and Biological Sciences , Universita' degli Studi della Tuscia , Viterbo , Italy
| |
Collapse
|
8
|
Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion. Int J Mol Sci 2017; 18:ijms18020387. [PMID: 28208668 PMCID: PMC5343922 DOI: 10.3390/ijms18020387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/27/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Blood banks use pathogen inactivation (PI) technologies to increase the safety of platelet concentrates (PCs). The characteristics of PI-treated PCs slightly differ from those of untreated PCs, but the underlying reasons are not well understood. One possible cause is the generation of oxidative stress during the PI process. This is of great interest since reactive oxygen species (ROS) act as second messengers in platelet functions. Furthermore, there are links between protein oxidation and phosphorylation, another mechanism that is critical for cell regulation. Current research efforts focus on understanding the underlying mechanisms and identifying new target proteins. Proteomics technologies represent powerful tools for investigating signaling pathways involving ROS and post-translational modifications such as phosphorylation, while quantitative techniques enable the comparison of the platelet resting state versus the stimulated state. In particular, redox cysteine is a key player in platelet activation upon stimulation by different agonists. This review highlights the experiments that have provided insights into the roles of ROS in platelet function and the implications for platelet transfusion, and potentially in diseases such as inflammation and platelet hyperactivity. The review also describes the implication of redox mechanism in platelet storage considerations.
Collapse
|
9
|
Abstract
Red blood cells (RBCs) are known for their role in oxygen and carbon dioxide transport. The main function of RBCs is directly linked to many diseases that cause low oxygen levels in tissues such as congenital heart disease in adults, chronic obstructive pulmonary disease, sleep apnea, sickle cell disease, etc. Red blood cells are a direct target for a number of parasitic diseases such as malaria (Plasmodium) and similar parasites of the phylum Apicomplexa (Toxoplasma, Theileria, Eimeria, Babesia, and Cryptosporidium). RBC membrane components, in particular, are suitable targets for the discovery of drugs against parasite interaction. There is also evidence that RBCs release growth and survival factors, thereby linking RBCs with cancer. RBCs are abundant and travel throughout the body; consequently changes in RBC proteome potentially reflect other diseases as well. This chapter describes erythrocyte isolation from blood and its fractionation into RBC membrane and soluble cytosolic fractions. Alternative procedures for mass spectrometry analysis of RBC membrane proteome will be presented.
Collapse
Affiliation(s)
- Ana Sofia Carvalho
- Computational and Experimental Biology Group, Nova Medical School/ Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, 6-6A, Lisboa, 1150-082, Portugal
| | - Manuel S Rodriguez
- Advanced Technology Institute in Life Sciences (ITAV), CNRS-USR3505, 31106, Toulouse, France
- University of Toulouse III-Paul Sabatier, 31077, Toulouse, France
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, 6-6A, Lisboa, 1150-082, Portugal.
| |
Collapse
|
10
|
Abstract
Heart failure (HF) continues to have a sufficient impact on morbidity, mortality, and disability in developed countries. Growing evidence supports the hypothesis that microparticles (MPs) might contribute to the pathogenesis of the HF development playing a pivotal role in the regulation of the endogenous repair system, thrombosis, coagulation, inflammation, immunity, and metabolic memory phenomenon. Therefore, there is a large body of data clarifying the predictive value of MP numerous in circulation among subjects with HF. Although the determination of MP signature is better than measurement of single MP circulating level, there is not yet close confirmation that immune phenotype of cells produced MPs are important for HF prediction and development. The aim of the chapter is to summarize knowledge regarding the role of various MPs in diagnosis and prognosis of HF. The role of MPs as a delivery vehicle for drugs attenuated cardiac remodeling is considered.
Collapse
|
11
|
Mukherjee S, Bandyopadhyay A. Proteomics in India: the clinical aspect. Clin Proteomics 2016; 13:21. [PMID: 27822170 PMCID: PMC5097398 DOI: 10.1186/s12014-016-9122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Proteomics has emerged as a highly promising bioanalytical technique in various aspects of applied biological research. In Indian academia, proteomics research has grown remarkably over the last decade. It is being extensively used for both basic as well as translation research in the areas of infectious and immune disorders, reproductive disorders, cardiovascular diseases, diabetes, eye disorders, human cancers and hematological disorders. Recently, some seminal works on clinical proteomics have been reported from several laboratories across India. This review aims to shed light on the increasing use of proteomics in India in a variety of biological conditions. It also highlights that India has the expertise and infrastructure needed for pursuing proteomics research in the country and to participate in global initiatives. Research in clinical proteomics is gradually picking up pace in India and its future seems very bright.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
12
|
Lithanatudom P, Smith DR. Analysis of protein profiling studies of β-thalassemia/Hb E disease. Proteomics Clin Appl 2016; 10:1093-1102. [DOI: 10.1002/prca.201600086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | - Duncan R. Smith
- Institute of Molecular Biosciences; Mahidol University; Nakorn Pathom Thailand
| |
Collapse
|