1
|
Reffai A, Hori M, Adusumilli R, Bermudez A, Bouzoubaa A, Pitteri S, Bennani Mechita M, Mallick P. A Proteomic Analysis of Nasopharyngeal Carcinoma in a Moroccan Subpopulation. Cancers (Basel) 2024; 16:3282. [PMID: 39409902 PMCID: PMC11476039 DOI: 10.3390/cancers16193282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a distinct cancer of the head and neck that is highly prevalent in Southeast Asia and North Africa. Though an extensive analysis of environmental and genetic contributors has been performed, very little is known about the proteome of this disease. A proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissues can provide valuable information on protein expression and molecular patterns for both increasing our understanding of the disease and for biomarker discovery. To date, very few NPC proteomic studies have been performed, and none focused on patients from Morocco and North Africa. METHODS Label-free Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to perform a proteomic analysis of FFPE tissue samples from a cohort of 41 NPC tumor samples of Morocco and North Africa origins. The LC-MS/MS data from this cohort were analyzed alongside 21 healthy controls using MaxQuant 2.4.2.0. A differential expression analysis was performed using the MSstats package in R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations were carried out using the DAVID bioinformatic tool. RESULTS 3341 proteins were identified across our NPC cases, revealing three main clusters and five DEPs with prognostic significance. The sex disparity of NPC was investigated from a proteomic perspective in which 59 DEPs were found between males and females, with significantly enriched terms associated with the immune response and gene expression. Furthermore, 26 DEPs were observed between patients with early and advanced stages of NPC with a significant cluster related to the immune response, implicating up-regulated DEPs such as IGHA, IGKC, and VAT1. Across both datasets, 6532 proteins were quantified between NPC patients and healthy controls. Among them, 1507 differentially expressed proteins (DEPs) were observed. GO and KEGG pathway analyses showed enriched terms of DEPs related to increased cellular activity, cell proliferation, and survival. PI3K and MAPK proteins as well as RAC1 BCL2 and PPIA were found to be overexpressed between cancer tissues and healthy controls. EBV infection was also one of the enriched pathways implicating its latent genes like LMP1 and LMP2 that activate several proteins and signaling pathways including NF-Kappa B, MAPK, and JAK-STAT pathways. CONCLUSION Our findings unveil the proteomic landscape of NPC for the first time in the Moroccan population. These studies additionally may provide a foundation for identifying potential biomarkers. Further research is still needed to help develop tools for the early diagnosis and treatment of NPC in Moroccan and North African populations.
Collapse
Affiliation(s)
- Ayman Reffai
- Intelligent Automation and BioMed Genomics Laboratory, Biology Department, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University-Tetouan, Tangier 90000, Morocco
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michelle Hori
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ravali Adusumilli
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Abel Bermudez
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Sharon Pitteri
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mohcine Bennani Mechita
- Intelligent Automation and BioMed Genomics Laboratory, Biology Department, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University-Tetouan, Tangier 90000, Morocco
| | - Parag Mallick
- Canary Center for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Montero-Calle A, Jiménez de Ocaña S, Benavente-Naranjo R, Rejas-González R, Bartolomé RA, Martínez-Useros J, Sanz R, Dziaková J, Fernández-Aceñero MJ, Mendiola M, Casal JI, Peláez-García A, Barderas R. Functional Proteomics Characterization of the Role of SPRYD7 in Colorectal Cancer Progression and Metastasis. Cells 2023; 12:2548. [PMID: 37947626 PMCID: PMC10648221 DOI: 10.3390/cells12212548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
SPRY domain-containing protein 7 (SPRYD7) is a barely known protein identified via spatial proteomics as being upregulated in highly metastatic-to-liver KM12SM colorectal cancer (CRC) cells in comparison to its isogenic poorly metastatic KM12C CRC cells. Here, we aimed to analyze SPRYD7's role in CRC via functional proteomics. Through immunohistochemistry, the overexpression of SPRYD7 was observed to be associated with the poor survival of CRC patients and with an aggressive and metastatic phenotype. Stable SPRYD7 overexpression was performed in KM12C and SW480 poorly metastatic CRC cells and in their isogenic highly metastatic-to-liver-KM12SM-and-to-lymph-nodes SW620 CRC cells, respectively. Upon upregulation of SPRYD7, in vitro and in vivo functional assays confirmed a key role of SPRYD7 in the invasion and migration of CRC cells and in liver homing and tumor growth. Additionally, transient siRNA SPRYD7 silencing allowed us to confirm in vitro functional results. Furthermore, SPRYD7 was observed as an inductor of angiogenesis. In addition, the dysregulated SPRYD7-associated proteome and SPRYD7 interactors were elucidated via 10-plex TMT quantitative proteins, immunoproteomics, and bioinformatics. After WB validation, the biological pathways associated with the stable overexpression of SPRYD7 were visualized. In conclusion, it was demonstrated here that SPRYD7 is a novel protein associated with CRC progression and metastasis. Thus, SPRYD7 and its interactors might be of relevance in identifying novel therapeutic targets for advanced CRC.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Sofía Jiménez de Ocaña
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Ruth Benavente-Naranjo
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Raquel Rejas-González
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Rubén A. Bartolomé
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (R.S.); (J.D.)
| | - Jana Dziaková
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (R.S.); (J.D.)
| | | | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (M.M.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (M.M.); (A.P.-G.)
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| |
Collapse
|
3
|
Chen YN, Shih CY, Guo SL, Liu CY, Shen MH, Chang SC, Ku WC, Huang CC, Huang CJ. Potential prognostic and predictive value of UBE2N, IMPDH1, DYNC1LI1 and HRASLS2 in colorectal cancer stool specimens. Biomed Rep 2023; 18:22. [PMID: 36846616 PMCID: PMC9945078 DOI: 10.3892/br.2023.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide. The poor specificity and sensitivity of the fecal occult blood test has prompted the development of CRC-related genetic markers for CRC screening and treatment. Gene expression profiles in stool specimens are effective, sensitive and clinically applicable. Herein, a novel advantage of using cells shed from the colon is presented for cost-effective CRC screening. Molecular panels were generated through a series of leave-one-out cross-validation and discriminant analyses. A logistic regression model following reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry was used to validate a specific panel for CRC prediction. The panel, consisting of ubiquitin-conjugating enzyme E2 N (UBE2N), inosine monophosphate dehydrogenase 1 (IMPDH1), dynein cytoplasmic 1 light intermediate chain 1 (DYNC1LI1) and phospholipase A and acyltransferase 2 (HRASLS2), accurately recognized patients with CRC and could thus be further investigated as a potential prognostic and predictive biomarker for CRC. UBE2N, IMPDH1 and DYNC1LI1 expression levels were upregulated and HRASLS2 expression was downregulated in CRC tissues. The predictive power of the panel was 96.6% [95% confidence interval (CI), 88.1-99.6%] sensitivity and 89.7% (95% CI, 72.6-97.8%) specificity at a predicted cut-off value at 0.540, suggesting that this four-gene panel testing of stool specimens can faithfully mirror the state of the colon. On the whole, the present study demonstrates that screening for CRC or cancer detection in stool specimens collected non-invasively does not require the inclusion of an excessive number of genes, and colonic defects can be identified via the detection of an aberrant protein in the mucosa or submucosa.
Collapse
Affiliation(s)
- Yu-Nung Chen
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Cheng-Yen Shih
- Division of Gastroenterology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Shu-Lin Guo
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C,Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Ming-Hung Shen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Surgery, Fu Jen Catholic University Hospital, New Taipei 24352, Taiwan, R.O.C.,PhD Program in Nutrition and Food Science, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10090, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| |
Collapse
|
4
|
Dijkstra J, Neikes HK, Rezaeifard S, Ma X, Voest EE, Tauriello DVF, Vermeulen M. Multiomics of Colorectal Cancer Organoids Reveals Putative Mediators of Cancer Progression Resulting from SMAD4 Inactivation. J Proteome Res 2023; 22:138-151. [PMID: 36450103 PMCID: PMC9830641 DOI: 10.1021/acs.jproteome.2c00551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The development of metastasis severely reduces the life expectancy of patients with colorectal cancer (CRC). Although loss of SMAD4 is a key event in CRC progression, the resulting changes in biological processes in advanced disease and metastasis are not fully understood. Here, we applied a multiomics approach to a CRC organoid model that faithfully reflects the metastasis-supporting effects of SMAD4 inactivation. We show that loss of SMAD4 results in decreased differentiation and activation of pro-migratory and cell proliferation processes, which is accompanied by the disruption of several key oncogenic pathways, including the TGFβ, WNT, and VEGF pathways. In addition, SMAD4 inactivation leads to increased secretion of proteins that are known to be involved in a variety of pro-metastatic processes. Finally, we show that one of the factors that is specifically secreted by SMAD4-mutant organoids─DKK3─reduces the antitumor effects of natural killer cells (NK cells). Altogether, our data provide new insights into the role of SMAD4 perturbation in advanced CRC.
Collapse
Affiliation(s)
- Jelmer
J. Dijkstra
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Hannah K. Neikes
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Somayeh Rezaeifard
- Department
of Cell Biology, Radboud University Medical Center/Radboud Institute
for Molecular Life Sciences (RIMLS), Radboud
University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Xuhui Ma
- Department
of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Antoni van Leeuwenhoek
Hospital, 1066 CX Amsterdam, The Netherlands
| | - Emile E. Voest
- Department
of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Antoni van Leeuwenhoek
Hospital, 1066 CX Amsterdam, The Netherlands
| | - Daniele V. F. Tauriello
- Department
of Cell Biology, Radboud University Medical Center/Radboud Institute
for Molecular Life Sciences (RIMLS), Radboud
University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Michiel Vermeulen
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands,
| |
Collapse
|
5
|
Evaluation of lncRNA FOXD2-AS1 Expression as a Diagnostic Biomarker in Colorectal Cancer. Rep Biochem Mol Biol 2022; 11:471-478. [PMID: 36718294 PMCID: PMC9883026 DOI: 10.52547/rbmb.11.3.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 01/19/2023]
Abstract
Background Colorectal cancer (CRC) is still considered one of the prevalent cancers worldwide. Investigation of potential biomarkers for early detection of CRC is essential for the effective management of patients using therapeutic strategies. Considering that, this study was aimed to examine the changes in lncRNA FOXD2-AS1 expression through colorectal tumorigenesis. Methods Fifty CRC tumor tissues and fifty adjacent normal tissue samples were prepared and involved in the current study. Total RNA was extracted from the samples and then reverse transcribed to complementary DNA. Next, the expression levels of lncRNA FOXD2-AS1 were evaluated using real-time PCR in CRC samples compared to normal ones. Also, receiver operating characteristic curve analysis was used to evaluate the diagnostic value of FOXD2-AS1 for CRC. Results The obtained results showed that the expression level of FOXD2-AS1 gene was significantly (p<0.0001) up-regulated in tumor tissues compared to normal marginal tissues. Also, a significant correlation was observed between higher the expression of FOXD2-AS1and the differentiation of tumor cells. Furthermore, ROC curve analysis estimated an AUC value of 0.59 for FOXD2-AS1, suggesting its potential as a diagnostic target. Conclusion Taken together, the current study implied that tissue-specific upregulation of lncRNA FOXD2-AS1 might be appropriate diagnostic biomarkers for CRC. Nonetheless, more studies are needed to validate these results and further illustrate FOXD2-AS1 function through colorectal tumorigenesis.
Collapse
|
6
|
Photopolymerization with EDTA and Riboflavin for Proteins Analysis in Polyacrylamide Gel Electrophoresis. Protein J 2022; 41:438-443. [PMID: 35895218 DOI: 10.1007/s10930-022-10068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 10/16/2022]
Abstract
A new method for photosensitized polymerization of polyacrylamide gels was proposed. Photopolymerization of acrylamide/N,N'-methylenebisacrylamide (AM/Bis) was assisted with combination of catalyst ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) and photoinitiator riboflavin (RF). The prepared cross-linked AM/Bis + EDTA/RF gels were tested in electrophoretic SDS-PAGE system at high concentration of AM (20 wt%). The efficiency of these systems for electrophoretic separation of histones of human blood lymphocytes was demonstrated. In principle, such gels with small pores in the separation zone can offer advantages for resolution of proteins. The advantages of proposed method also include simple technique and possibility of gel preparation in a timely manner (for 10-15 min). However, in microporous gel systems some limitations in electroblotting technique could occur, which is particularly crucial for hydrophobic proteins.
Collapse
|
7
|
Zhu Y, Li J, Liu H, Song Z, Yang Q, Lu C, Chen W. Circular RNA, hsa_circRNA_102049, promotes colorectal cancer cell migration and invasion via binding and suppressing miRNA-455-3p. Exp Ther Med 2022; 23:244. [PMID: 35222721 PMCID: PMC8815054 DOI: 10.3892/etm.2022.11169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is the second most prevalent malignant gastrointestinal tumor type worldwide, displaying poor prognosis. Accumulating studies have reported the significance of circular RNAs (circRNAs) and microRNAs (miRNAs) in CRC carcinogenesis and development. At present, the functions and mechanisms of action underlying the circular RNA, hsa_circRNA_102049, in CRC are not completely understood. The present study aimed to establish the involvement of hsa_circRNA_102049 in CRC, as well as the associated mechanisms. The expression levels of hsa_circRNA_102049 and miRNA-455-3p were measured in CRC cell lines and tissues via reverse transcription-quantitative PCR. CRC progression was evaluated by performing Cell Counting Kit-8, flow cytometry, wound healing and Transwell invasion assays. The results demonstrated that hsa_circRNA_102049 was highly expressed in both CRC tissues and cell lines, which was associated with enhanced CRC cell proliferation, migration and invasion. Furthermore, miR-455-3p expression was downregulated in CRC cells and served as a target of has_circRNA_102049, which was validated by performing the dual luciferase reporter assay. hsa_circRNA_102049 knockdown significantly increased miR-455-3p expression, which was significantly reversed by co-transfection with the miR-455-3p inhibitor. Notably, miRNA-455-3p overexpression alleviated hsa_circRNA_102049-mediated induction of CRC cell proliferation, migration and invasion. The present study clearly demonstrated that miRNA-455-3p was a target of hsa_circRNA_102049. Moreover, the results indicated that the circular RNA, hsa_circRNA_102049, may function as a tumor promoter in CRC via directly sponging miRNA-455-3p.
Collapse
Affiliation(s)
- Yuandong Zhu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Jianjion Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haiyuan Liu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Zhengming Song
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Qinghua Yang
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Chengdong Lu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Yiwu, Zhejiang 322000, P.R. China
| | - Wenbin Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
8
|
Kamaly N, Farokhzad OC, Corbo C. Nanoparticle protein corona evolution: from biological impact to biomarker discovery. NANOSCALE 2022; 14:1606-1620. [PMID: 35076049 DOI: 10.1039/d1nr06580g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles exposed to biological fluids such as blood, quickly interact with their surrounding milieu resulting in a biological coating that results in large part as a function of the physicochemical properties of the nanomaterial. The large nanoparticle surface area-to-volume ratio further augments binding of biological molecules and the resulting biomolecular or protein corona, once thought of as problematic biofouling, is now viewed as a rich source of biological information that can guide the development of nanomedicines. This review gives an overview of the utility of the protein corona in proteomic profiling and discusses how a better understanding of nano-bio interactions can accelerate the clinical translation of nanomedicines and facilitate the identification of disease-specific biomarkers. With the FDA requirement of the protein corona analysis of nanoparticles in place, it is envisaged that analyzing the protein corona of nanoparticles on a case-by-case basis can provide highly valuable nano-bio interface information that can aid and improve their clinical translation.
Collapse
Affiliation(s)
- Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, UK.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Claudia Corbo
- Department of Medicine and Surgery, Center for Nanomedicine NANOMIB, University of Milan Bicocca, Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
9
|
Szymańska-Chabowska A, Świątkowski F, Jankowska-Polańska B, Mazur G, Chabowski M. Nestin Expression as a Diagnostic and Prognostic Marker in Colorectal Cancer and Other Tumors. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211038256. [PMID: 34421318 PMCID: PMC8377314 DOI: 10.1177/11795549211038256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer, colon cancer, breast cancer, and prostate cancer are the leading causes of death in developed countries. Many cancers display non-specific signs in the early stage of the disease, thus making early diagnosis often difficult. We focused on nestin as a new biomarker of possible clinical importance in the early diagnosis and monitoring of cancer. The expression of nestin takes place at an early stage of neural differentiation, but no expression of the nestin gene can be revealed in normal, mature adult tissues. Nestin plays an important role in the development of the central nervous system and contributes to the organization and maintenance of cell shape. Nestin was found to be a marker of microvessel density, which in turn has proven to be a reliable prognostic factor for neoplastic malignancies in patients. Nestin expression correlates with an increased aggressiveness of tumor cells. The role of nestin in cancers of the colon and rectum, liver, central nervous system, lung cancer, breast cancer, melanoma, and other cancers has been reviewed in the literature. Associations between nestin expression and prognosis or drug-resistance may help in disease management. More research is needed to understand the molecular mechanisms of nestin expression and its role in possible targeted therapy.
Collapse
Affiliation(s)
- Anna Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Filip Świątkowski
- Department of Surgery, 4th Military Teaching Hospital, Wroclaw, Poland
| | - Beata Jankowska-Polańska
- Division of Nervous System Diseases, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, Wroclaw, Poland.,Division of Oncology and Palliative Care, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
10
|
Ryu J, Thomas SN. Quantitative Mass Spectrometry-Based Proteomics for Biomarker Development in Ovarian Cancer. Molecules 2021; 26:molecules26092674. [PMID: 34063568 PMCID: PMC8125593 DOI: 10.3390/molecules26092674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy among women. Approximately 70–80% of patients with advanced ovarian cancer experience relapse within five years and develop platinum-resistance. The short life expectancy of patients with platinum-resistant or platinum-refractory disease underscores the need to develop new and more effective treatment strategies. Early detection is a critical step in mitigating the risk of disease progression from early to an advanced stage disease, and protein biomarkers have an integral role in this process. The best biological diagnostic tool for ovarian cancer will likely be a combination of biomarkers. Targeted proteomics methods, including mass spectrometry-based approaches, have emerged as robust methods that can address the chasm between initial biomarker discovery and the successful verification and validation of these biomarkers enabling their clinical translation due to the robust sensitivity, specificity, and reproducibility of these versatile methods. In this review, we provide background information on the fundamental principles of biomarkers and the need for improved treatment strategies in ovarian cancer. We also provide insight into the ways in which mass spectrometry-based targeted proteomics approaches can provide greatly needed solutions to many of the challenges related to ovarian cancer biomarker development.
Collapse
|
11
|
Yu M, Song XG, Zhao YJ, Dong XH, Niu LM, Zhang ZJ, Shang XL, Tang YY, Song XR, Xie L. Circulating Serum Exosomal Long Non-Coding RNAs FOXD2-AS1, NRIR, and XLOC_009459 as Diagnostic Biomarkers for Colorectal Cancer. Front Oncol 2021; 11:618967. [PMID: 33777763 PMCID: PMC7996089 DOI: 10.3389/fonc.2021.618967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Exosomes derived from cancer cells encapsulate various kinds of tumor-specific molecules and thus can interact with adjacent or distant cells to mediate information exchange. Long non-coding RNAs (lncRNAs) in exosomes have the potential as diagnostic and prognostic biomarkers in different types of cancers. The current study was aimed to identify circulating exosomal lncRNAs for the diagnosis of colorectal cancer (CRC). Methods Exosomes were isolated from the serum by ultracentrifugation and verified by transmission electron microscope (TEM), qNano, and immunoblotting. Exosomal lncRNAs FOXD2-AS1, NRIR, and XLOC_009459 were selected by lncRNA microarray and validated by qPCR in 203 CRC patients and 201 healthy donors. The receiver operating characteristic curve (ROC) was used to assess the diagnostic efficiency of serum exosomal lncRNAs. Results Exosomal FOXD2-AS1, NRIR, and XLOC_009459 (TCONS_00020073) levels were significantly upregulated in 203 CRC patients and 80 early-stage CRC patients compared to 201 healthy donors, possessing the area under the curve (AUC) of 0.728, 0.660, and 0.682 for CRC, as well as 0.743, 0.660, and 0.689 for early-stage CRC, respectively. Notably, their combination demonstrated the markedly elevated AUC of 0.736 for CRC and 0.758 for early-stage CRC, indicating their potential as diagnostic biomarkers for CRC. Conclusions Our data suggested that exosomal lncRNAs FOXD2-AS1, NRIR, and XLOC_009459 act as the promising biomarkers for the diagnostics of CRC and early-stage CRC.
Collapse
Affiliation(s)
- Miao Yu
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Jinan Qilu Medical Inspection Co., Ltd., Jinan, China
| | - Xing-Guo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ya-Jing Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao-Han Dong
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li-Min Niu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhi-Jun Zhang
- Department of Clinical Laboratory, Tai'an City Central Hospital, Tai'an, China
| | - Xiao-Ling Shang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - You-Yong Tang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xian-Rang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
12
|
Song Y, Wang J, Sun J, Chen X, Shi J, Wu Z, Yu D, Zhang F, Wang Z. Screening of Potential Biomarkers for Gastric Cancer with Diagnostic Value Using Label-free Global Proteome Analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 18:679-695. [PMID: 33607292 PMCID: PMC8377014 DOI: 10.1016/j.gpb.2020.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/25/2020] [Accepted: 08/15/2020] [Indexed: 01/14/2023]
Abstract
Gastric cancer (GC) is known as a top malignant type of tumors worldwide. Despite the recent decrease in mortality rates, the prognosis remains poor. Therefore, it is necessary to find novel biomarkers with early diagnostic value for GC. In this study, we present a large-scale proteomic analysis of 30 GC tissues and 30 matched healthy tissues using label-free global proteome profiling. Our results identified 537 differentially expressed proteins, including 280 upregulated and 257 downregulated proteins. The ingenuity pathway analysis (IPA) results indicated that the sirtuin signaling pathway was the most activated pathway in GC tissues whereas oxidative phosphorylation was the most inhibited. Moreover, the most activated molecular function was cellular movement, including tissue invasion by tumor cell lines. Based on IPA results, 15 hub proteins were screened. Using the receiver operating characteristic curve, most of hub proteins showed a high diagnostic power in distinguishing between tumors and healthy controls. A four-protein (ATP5B-ATP5O-NDUFB4-NDUFB8) diagnostic signature was built using a random forest model. The area under the curve (AUC) values of this model were 0.996 and 0.886 for the training and testing sets, respectively, suggesting that the four-protein signature has a high diagnostic power. This signature was further tested with independent datasets using plasma enzyme-linked immune sorbent assays, resulting in an AUC value of 0.778 for distinguishing GC tissues from healthy controls, and using immunohistochemical tissue microarray analysis, resulting in an AUC value of 0.805. In conclusion, this study identifies potential biomarkers and improves our understanding of the pathogenesis, providing novel therapeutic targets for GC.
Collapse
Affiliation(s)
- Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jun Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xiaowan Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jinxin Shi
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Dehao Yu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Fei Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
13
|
Clinicopathologic Analysis of Cathepsin B as a Prognostic Marker of Thyroid Cancer. Int J Mol Sci 2020; 21:ijms21249537. [PMID: 33333840 PMCID: PMC7765333 DOI: 10.3390/ijms21249537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
Thyroid cancer incidence has increased worldwide; however, investigations of thyroid cancer-related factors as potential prognosis markers remain insufficient. Secreted proteins from the cancer secretome are regulators of several molecular mechanisms and are, thereby, ideal candidates for potential markers. We aimed to identify a specific factor for thyroid cancer by analyzing the secretome from normal thyroid cells, papillary thyroid cancer (PTC) cells, and anaplastic thyroid cancer cells using mass spectrometry (MS). Cathepsin B (CTSB) showed highest expression in PTC cells compared to other cell lines, and CTSB levels in tumor samples were higher than that seen in normal tissue. Further, among thyroid cancer patients, increased CTSB expression was related to higher risk of lymph node metastasis (LNM) and advanced N stage. Overexpression of CTSB in thyroid cancer cell lines activated cell migration by increasing the expression of vimentin and Snail, while its siRNA-mediated silencing inhibited cell migration by decreasing vimentin and Snail expression. Mechanistically, CTSB-associated enhanced cell migration and upregulation of vimentin and Snail occurred via increased phosphorylation of p38. As our results suggest that elevated CTSB in thyroid cancer induces the expression of metastatic proteins and thereby leads to LNM, CTSB may be a good and clinically relevant prognostic marker.
Collapse
|
14
|
Glycoproteomic Analysis Reveals Aberrant Expression of Complement C9 and Fibronectin in the Plasma of Patients with Colorectal Cancer. Proteomes 2020; 8:proteomes8030026. [PMID: 32971853 PMCID: PMC7564939 DOI: 10.3390/proteomes8030026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality. Currently used CRC biomarkers provide insufficient sensitivity and specificity; therefore, novel biomarkers are needed to improve the CRC detection. Label-free quantitative proteomics were used to identify and compare glycoproteins, enriched by wheat germ agglutinin, from plasma of CRC patients and age-matched healthy controls. Among 189 identified glycoproteins, the levels of 7 and 15 glycoproteins were significantly altered in the non-metastatic and metastatic CRC groups, respectively. Protein-protein interaction analysis revealed that they were predominantly involved in immune responses, complement pathways, wound healing and coagulation. Of these, the levels of complement C9 (C9) was increased and fibronectin (FN1) was decreased in both CRC states in comparison to those of the healthy controls. Moreover, their levels detected by immunoblotting were validated in another independent cohort and the results were consistent with in the study cohort. Combination of CEA, a commercial CRC biomarker, with C9 and FN1 showed better diagnostic performance. Interestingly, predominant glycoforms associated with acetylneuraminic acid were obviously detected in alpha-2 macroglobulin, haptoglobin, alpha-1-acid glycoprotein 1, and complement C4-A of CRC patient groups. This glycoproteomic approach provides invaluable information of plasma proteome profiles of CRC patients and identification of CRC biomarker candidates.
Collapse
|
15
|
Secretome Proteomic Approaches for Biomarker Discovery: An Update on Colorectal Cancer. ACTA ACUST UNITED AC 2020; 56:medicina56090443. [PMID: 32878319 PMCID: PMC7559921 DOI: 10.3390/medicina56090443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Searching for new cancer-related biomarkers is a key priority for the early detection of solid tumors, such as colorectal cancer (CRC), in clinically relevant biological fluids. The cell line and/or tumor tissue secretome represents a valuable resource for discovering novel protein markers secreted by cancer cells. The advantage of a secretome analysis is the reduction of the large dynamic range characterizing human plasma/serum, and the simultaneous enrichment of low abundance cancer-secreted proteins, thereby overcoming the technical limitations underlying the direct search in blood samples. In this review, we provided a comprehensive overview of recent studies on the CRC secretome for biomarker discovery, focusing both on methodological and technical aspects of secretome proteomic approaches and on biomarker-independent validation in CRC patient samples (blood and tissues). Secretome proteomics are mainly based on LC-MS/MS analyses for which secretome samples are either in-gel or in-solution trypsin-digested. Adequate numbers of biological and technical replicates are required to ensure high reproducibility and robustness of the secretome studies. Moreover, another major challenge is the accuracy of proteomic quantitative analysis performed by label-free or labeling methods. The analysis of differentially expressed proteins in the CRC secretome by using bioinformatic tools allowed the identification of potential biomarkers for early CRC detection. In this scenario, this review may help to follow-up the recent secretome studies in order to select promising circulating biomarkers to be validated in larger screenings, thereby contributing toward a complete translation in clinical practice.
Collapse
|
16
|
Cevenini A, Celia C, Orrù S, Sarnataro D, Raia M, Mollo V, Locatelli M, Imperlini E, Peluso N, Peltrini R, De Rosa E, Parodi A, Del Vecchio L, Di Marzio L, Fresta M, Netti PA, Shen H, Liu X, Tasciotti E, Salvatore F. Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics 2020; 12:pharmaceutics12060559. [PMID: 32560359 PMCID: PMC7355455 DOI: 10.3390/pharmaceutics12060559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silicon microparticles (MSMPs) can incorporate drug-carrying nanoparticles (NPs) into their pores. An NP-loaded MSMP is a multistage vector (MSV) that forms a Matryoshka-like structure that protects the therapeutic cargo from degradation and prevents its dilution in the circulation during delivery to tumor cells. We developed an MSV constituted by 1 µm discoidal MSMPs embedded with PEGylated liposomes containing oxaliplatin (oxa) which is a therapeutic agent for colorectal cancer (CRC). To obtain extra-small liposomes able to fit the 60 nm pores of MSMP, we tested several liposomal formulations, and identified two optimal compositions, with a prevalence of the rigid lipid 1,2-distearoyl-sn-glycero-3-phosphocholine and of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. To improve the MSV assembly, we optimized the liposome-loading inside the MSMP and achieved a five-fold increase of the payload using an innovative lyophilization approach. This procedure also increased the load and limited dimensional changes of the liposomes released from the MSV in vitro. Lastly, we found that the cytotoxic efficacy of oxa-loaded liposomes and-oxa-liposome-MSV in CRC cell culture was similar to that of free oxa. This study increases knowledge about extra-small liposomes and their loading into porous materials and provides useful hints about alternative strategies for designing drug-encapsulating NPs.
Collapse
Affiliation(s)
- Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
| | - Christian Celia
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annuzio”, 66100 Chieti, Italy; (C.C.); (M.L.); (L.D.M.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.D.R.); (H.S.); (X.L.)
| | - Stefania Orrù
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
- Dipartimento di Scienze Motorie e del Benessere, Università “Parthenope”, 80133 Napoli, Italy
- IRCCS SDN, 80143 Napoli, Italy; (E.I.); (A.P.)
| | - Daniela Sarnataro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
| | - Valentina Mollo
- Italian Institute of Technology@CRIB Center for Advanced Biomaterials for Health Care, 80125 Napoli, Italy; (V.M.); (P.A.N.)
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annuzio”, 66100 Chieti, Italy; (C.C.); (M.L.); (L.D.M.)
| | | | - Nicoletta Peluso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
| | - Rosa Peltrini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Enrica De Rosa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.D.R.); (H.S.); (X.L.)
| | - Alessandro Parodi
- IRCCS SDN, 80143 Napoli, Italy; (E.I.); (A.P.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Luigi Del Vecchio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annuzio”, 66100 Chieti, Italy; (C.C.); (M.L.); (L.D.M.)
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, I-88100 Catanzaro, Italy;
| | - Paolo Antonio Netti
- Italian Institute of Technology@CRIB Center for Advanced Biomaterials for Health Care, 80125 Napoli, Italy; (V.M.); (P.A.N.)
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.D.R.); (H.S.); (X.L.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.D.R.); (H.S.); (X.L.)
| | - Ennio Tasciotti
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX 77030, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Correspondence: (E.T.); (F.S.)
| | - Francesco Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
- Correspondence: (E.T.); (F.S.)
| |
Collapse
|
17
|
De Pasquale V, Costanzo M, Siciliano RA, Mazzeo MF, Pistorio V, Bianchi L, Marchese E, Ruoppolo M, Pavone LM, Caterino M. Proteomic Analysis of Mucopolysaccharidosis IIIB Mouse Brain. Biomolecules 2020; 10:biom10030355. [PMID: 32111039 PMCID: PMC7175334 DOI: 10.3390/biom10030355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mucopolysaccharidosis IIIB (MPS IIIB) is an inherited metabolic disease due to deficiency of α-N-Acetylglucosaminidase (NAGLU) enzyme with subsequent storage of undegraded heparan sulfate (HS). The main clinical manifestations of the disease are profound intellectual disability and neurodegeneration. A label-free quantitative proteomic approach was applied to compare the proteome profile of brains from MPS IIIB and control mice to identify altered neuropathological pathways of MPS IIIB. Proteins were identified through a bottom up analysis and 130 were significantly under-represented and 74 over-represented in MPS IIIB mouse brains compared to wild type (WT). Multiple bioinformatic analyses allowed to identify three major clusters of the differentially abundant proteins: proteins involved in cytoskeletal regulation, synaptic vesicle trafficking, and energy metabolism. The proteome profile of NAGLU-/- mouse brain could pave the way for further studies aimed at identifying novel therapeutic targets for the MPS IIIB. Data are available via ProteomeXchange with the identifier PXD017363.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| | | | | | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
| | - Laura Bianchi
- Laboratory of Functional Proteomics, Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Emanuela Marchese
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
- Department of Mental Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- Correspondence: ; Tel.: +39-081-7463043
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| |
Collapse
|
18
|
Szymańska-Chabowska A, Juzwiszyn J, Jankowska-Polańska B, Tański W, Chabowski M. Chitinase 3-Like 1, Nestin, and Testin Proteins as Novel Biomarkers of Potential Clinical Use in Colorectal Cancer: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1279:1-8. [PMID: 32170669 DOI: 10.1007/5584_2020_506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is the third most commonly diagnosed cancer in males and the second most common in females. Only 10-20% of patients are diagnosed at the early stage of disease. Recently, the role of novel biomarkers of the neoplastic process in the early detection of colorectal cancer has been widely discussed. In this review, we focused on the three novel biomarkers that are of potential clinical importance in diagnosing and monitoring colorectal cancer. Chitinase 3-like 1 protein, also known as YKL-40, and nestin and testin proteins are produced by colorectal cancer cells. YKL-40 protein is a marker of proliferation, differentiation, and tissue morphogenetic changes. The level of YKL-40 is elevated in about 20% of patients with colorectal cancer. An increased expression of nestin indicates immaturity. It is a marker of angiogenesis in neoplastic processes. Testin protein is a component of cell-cell connections and focal adhesions. The protein is produced in normal human tissues, but not in tumor tissues. Downregulation of testin increases cell motility, spread, and proliferation, and decreases apoptosis. The usefulness and role of these biomarkers, both alone and combined, in the diagnostics of colorectal cancer should be further explored as early cancer detection may substantially improve treatment outcome and patient survival.
Collapse
Affiliation(s)
- Anna Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Jan Juzwiszyn
- Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Beata Jankowska-Polańska
- Division of Nursing in Internal Medicine, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Tański
- Department of Internal Medicine, Fourth Military Teaching Hospital, Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland. .,Department of Surgery, Fourth Military Teaching Hospital, Wroclaw, Poland.
| |
Collapse
|
19
|
Bamehr H, Saidijam M, Dastan D, Amini R, Pourjafar M, Najafi R. Ferula pseudalliacea induces apoptosis in human colorectal cancer HCT-116 cells via mitochondria-dependent pathway. Arch Physiol Biochem 2019; 125:284-291. [PMID: 29587544 DOI: 10.1080/13813455.2018.1455710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ferula species have diverse biological functions. This study set out to investigate the anti-proliferative effects of methanolic extract of F. pseudalliacea against human colon cancer HCT-116 cell line. Cytotoxic effects of F. pseudalliacea on HCT-116 cells was estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Real-time polymerase chain reaction (PCR) and Western blot were employed to analyze BAX and Bcl2 expression. Cell cycle analysis and apoptosis were conducted using flowcytometry and Annexin V/ propidium iodide (PI) staining. Rhodamine 123 staining and enzyme-linked immunosorbent assay (ELISA) assay were employed to quantify the mitochondria membrane potential (MMP) and caspase 3 activity, respectively. F. pseudalliacea markedly decreased HCT-116 cells viability. The gene and protein expression of BAX were increased, whereas Bcl-2 was decreased in F. pseudalliacea treated cells. F. pseudalliacea induced apoptosis via promotion of cell cycle arrest, caspase 3 activation, and destruction of MMP. These results demonstrate that F. pseudalliacea extract is able to induce apoptosis in HCT-116 cells mainly by activation of the mitochondrial pathway.
Collapse
Affiliation(s)
- Hadi Bamehr
- a Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Massoud Saidijam
- a Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Dara Dastan
- b Medicinal Plants and Natural Products Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
- c Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Razieh Amini
- a Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Mona Pourjafar
- a Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Rezvan Najafi
- a Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
20
|
Chauvin A, Boisvert FM. Clinical Proteomics in Colorectal Cancer, a Promising Tool for Improving Personalised Medicine. Proteomes 2018; 6:proteomes6040049. [PMID: 30513835 PMCID: PMC6313903 DOI: 10.3390/proteomes6040049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is the third most common and the fourth most lethal cancer worldwide. In most of cases, patients are diagnosed at an advanced or even metastatic stage, thus explaining the high mortality. The lack of proper clinical tests and the complicated procedures currently used for detecting this cancer, as well as for predicting the response to treatment and the outcome of a patient's resistance in guiding clinical practice, are key elements driving the search for biomarkers. In the present overview, the different biomarkers (diagnostic, prognostic, treatment resistance) discovered through proteomics studies in various colorectal cancer study models (blood, stool, biopsies), including the different proteomic techniques used for the discovery of these biomarkers, are reviewed, as well as the various tests used in clinical practice and those currently in clinical phase. These studies define the limits and perspectives related to proteomic biomarker research for personalised medicine in colorectal cancer.
Collapse
Affiliation(s)
- Anaïs Chauvin
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
21
|
Costanzo M, Cevenini A, Marchese E, Imperlini E, Raia M, Del Vecchio L, Caterino M, Ruoppolo M. Label-Free Quantitative Proteomics in a Methylmalonyl-CoA Mutase-Silenced Neuroblastoma Cell Line. Int J Mol Sci 2018; 19:ijms19113580. [PMID: 30428564 PMCID: PMC6275031 DOI: 10.3390/ijms19113580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
Methylmalonic acidemias (MMAs) are inborn errors of metabolism due to the deficient activity of methylmalonyl-CoA mutase (MUT). MUT catalyzes the formation of succinyl-CoA from methylmalonyl-CoA, produced from propionyl-CoA catabolism and derived from odd chain fatty acids β-oxidation, cholesterol, and branched-chain amino acids degradation. Increased methylmalonyl-CoA levels allow for the presymptomatic diagnosis of the disease, even though no approved therapies exist. MMA patients show hyperammonemia, ketoacidosis, lethargy, respiratory distress, cognitive impairment, and hepatomegaly. The long-term consequences concern neurologic damage and terminal kidney failure, with little chance of survival. The cellular pathways affected by MUT deficiency were investigated using a quantitative proteomics approach on a cellular model of MUT knockdown. Currently, a consistent reduction of the MUT protein expression was obtained in the neuroblastoma cell line (SH-SY5Y) by using small-interfering RNA (siRNA) directed against an MUT transcript (MUT siRNA). The MUT absence did not affect the cell viability and apoptotic process in SH-SY5Y. In the present study, we evaluate and quantify the alterations in the protein expression profile as a consequence of MUT-silencing by a mass spectrometry-based label-free quantitative analysis, using two different quantitative strategies. Both quantitative methods allowed us to observe that the expression of the proteins involved in mitochondrial oxido-reductive homeostasis balance was affected by MUT deficiency. The alterated functional mitochondrial activity was observed in siRNA_MUT cells cultured with a propionate-supplemented medium. Finally, alterations in the levels of proteins involved in the metabolic pathways, like carbohydrate metabolism and lipid metabolism, were found.
Collapse
Affiliation(s)
- Michele Costanzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| | - Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Emanuela Marchese
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania "L. Vanvitelli", 80138 Naples, Italy.
| | | | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | | | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| | - Margherita Ruoppolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| |
Collapse
|
22
|
Sánchez-Botet A, Gasa L, Quandt E, Hernández-Ortega S, Jiménez J, Mezquita P, Carrasco-García MÀ, Kron SJ, Vidal A, Villanueva A, Ribeiro MPC, Clotet J. The atypical cyclin CNTD2 promotes colon cancer cell proliferation and migration. Sci Rep 2018; 8:11797. [PMID: 30087414 PMCID: PMC6081371 DOI: 10.1038/s41598-018-30307-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/27/2018] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with 8–10% of these tumours presenting a BRAF (V600E) mutation. Cyclins are known oncogenes deregulated in many cancers, but the role of the new subfamily of atypical cyclins remains elusive. Here we have performed a systematic analysis of the protein expression levels of eight atypical cyclins in human CRC tumours and several cell lines, and found that CNTD2 is significantly upregulated in CRC tissue compared to the adjacent normal one. CNTD2 overexpression in CRC cell lines increases their proliferation capacity and migration, as well as spheroid formation capacity and anchorage-independent growth. Moreover, CNTD2 increases tumour growth in vivo on xenograft models of CRC with wild-type BRAF. Accordingly, CNTD2 downregulation significantly diminished the proliferation of wild-type BRAF CRC cells, suggesting that CNTD2 may represent a new prognostic factor and a promising drug target in the management of CRC.
Collapse
Affiliation(s)
- Abril Sánchez-Botet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Laura Gasa
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sara Hernández-Ortega
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pau Mezquita
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Miquel Àngel Carrasco-García
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.,Pathology Department, Hospital Universitari General de Catalunya, Sant Cugat del Vallès, Barcelona, Spain
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, USA
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC, L'Hospitalet del Llobregat, Barcelona, Spain.,Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO) Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
23
|
Ji B, Cheng X, Cai X, Kong C, Yang Q, Fu T, Wang Y, Song Y. CK20 mRNA Expression in Serum as a Biomarker for Colorectal Cancer Diagnosis: A Meta-analysis. Open Med (Wars) 2017; 12:347-353. [PMID: 29043299 PMCID: PMC5639391 DOI: 10.1515/med-2017-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate the diagnostic value of serumCK20 mRNA as a biomarker for colorectal cancer diagnosis by meta-analysis. Clinical studies related to serum CK20 mRNA expression for colorectal cancer diagnosis were searched in the databases of Pubmed, Cochrane Library, Embase, ISI Web of Knowledge, CNKI and Wanfang. The number of true positive (tp), false positive (fp), false negative (fn) and true negative (tn) of the original included publications were extracted by two reviewers independently. The diagnostic sensitivity, specificity, positive likely hood ratio (+LR), negative likelyhood ratio (-LR), diagnostic odds ratio (DOR) and area under the symmetric ROC curve (AUC) were pooled by random or fixed effect method according to the statistical heterogeneity among the studies. After screening the databases, nineteen publications met the inclusion criteria and were finally included in this meta-analysis. The diagnostic sensitivity and specificity were pooled by random effect model(I2>50%). The pooled diagnostic sensitivity and specificity of CK20 mRNA in serum as biomarker for colorectal cancer were 0.49 (95% CI:0.46 to 0.51) and 0.94 (95%CI:0.92-0.96) respectively. The pooled +LR and -LR were 10.90 (95%CI:5.78 to 20.55) and 0.51 (95%CI:0.45 to 0.57) respectively by random-effect method. The pooled DOR was 22.31 with the 95% CI of 11.65 to 42.71. The pooled area under the ROC curve (AUC) was 0.72for CK20 mRNA in serum as a biomarker for colorectal cancer diagnosis. Conclusion Serum CK20 mRNA expression was significantly elevated in colorectal cancer patients which could be a promising serum biomarker for colorectal cancer diagnosis with high specificity.
Collapse
Affiliation(s)
- Baoyan Ji
- Department of Oncology, Qinghai Province People's Hospital, Xining Qinghai81000, China
| | - Xiongfei Cheng
- Department of Oncology Center, The People's Hospital of Shiyan City HubeiProvince442000China
| | - Xiaojun Cai
- Department of Oncology Center, The People's Hospital of Shiyan City HubeiProvince442000China
| | - Chuiyan Kong
- Department of Oncology, The People's Hospital of Wuzhou GuangxiProvince543000, China
| | - Qingyan Yang
- Department of Oncology, The 188th Hospital of PLA, Chaozhou GuangdongProvince521000, China
| | - Ting Fu
- Department of Oncology Center, The People's Hospital of Shiyan City HubeiProvince442000China
| | - Yahang Wang
- Department of General surgery, People's Hospital Fenghua District Ningbo City ZhejiangProvince, 315500, PR China
| | - Ying Song
- Department of Oncology Center, The People's Hospital of Shiyan City HubeiProvince442000China
| |
Collapse
|
24
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|