1
|
Wang K, Luo L, Fu S, Wang M, Wang Z, Dong L, Wu X, Dai L, Peng Y, Shen G, Chen HN, Nice EC, Wei X, Huang C. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat Commun 2023; 14:1011. [PMID: 36823188 PMCID: PMC9950448 DOI: 10.1038/s41467-023-36708-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Serine synthesis is crucial for tumor growth and survival, but its regulatory mechanism in cancer remains elusive. Here, using integrative metabolomics and transcriptomics analyses, we show a heterogeneity between metabolite and transcript profiles. Specifically, the level of serine in hepatocellular carcinoma (HCC) tissues is increased, whereas the expression of phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in serine biosynthesis pathway, is markedly downregulated. Interestingly, the increased serine level is obtained by enhanced PHGDH catalytic activity due to protein arginine methyltransferase 1 (PRMT1)-mediated methylation of PHGDH at arginine 236. PRMT1-mediated PHGDH methylation and activation potentiates serine synthesis, ameliorates oxidative stress, and promotes HCC growth in vitro and in vivo. Furthermore, PRMT1-mediated PHGDH methylation correlates with PHGDH hyperactivation and serine accumulation in human HCC tissues, and is predictive of poor prognosis of HCC patients. Notably, blocking PHGDH methylation with a TAT-tagged nonmethylated peptide inhibits serine synthesis and restrains HCC growth in an HCC patient-derived xenograft (PDX) model and subcutaneous HCC cell-derived xenograft model. Overall, our findings reveal a regulatory mechanism of PHGDH activity and serine synthesis, and suggest PHGDH methylation as a potential therapeutic vulnerability in HCC.
Collapse
Affiliation(s)
- Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, PR China
| | - Shuyue Fu
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Mao Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zihao Wang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lixia Dong
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xingyun Wu
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lunzhi Dai
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yong Peng
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Guobo Shen
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard Collins Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Coombs KM. Update on Proteomic approaches to uncovering virus-induced protein alterations and virus -host protein interactions during the progression of viral infection. Expert Rev Proteomics 2020; 17:513-532. [PMID: 32910682 DOI: 10.1080/14789450.2020.1821656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Viruses induce profound changes in the cells they infect. Understanding these perturbations will assist in designing better therapeutics to combat viral infection. System-based proteomic assays now provide unprecedented opportunity to monitor large numbers of cellular proteins. AREAS COVERED This review will describe various quantitative and functional mass spectrometry-based methods, and complementary non-mass spectrometry-based methods, such as aptamer profiling and proximity extension assays, and examples of how each are used to delineate how viruses affect host cells, identify which viral proteins interact with which cellular proteins, and how these change during the course of a viral infection. PubMed was searched multiple times prior to manuscript submissions and revisions, using virus, viral, proteomics; in combination with each keyword. The most recent examples of published works from each search were then analyzed. EXPERT OPINION There has been exponential growth in numbers and types of proteomic analyses in recent years. Continued development of reagents that allow increased multiplexing and deeper proteomic probing of the cell, at quantitative and functional levels, enhancements that target more important protein modifications, and improved bioinformatics software tools and pathway prediction algorithms will accelerate this growth and usher in a new era of host proteome understanding.
Collapse
Affiliation(s)
- Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, Manitoba, Canada.,Manitoba Centre for Proteomics and Systems Biology , Winnipeg, Manitoba, Canada.,Manitoba Institute of Child Health , Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Dai Q, Deng J, Zhou J, Wang Z, Yuan XF, Pan S, Zhang HB. Long non-coding RNA TUG1 promotes cell progression in hepatocellular carcinoma via regulating miR-216b-5p/DLX2 axis. Cancer Cell Int 2020; 20:8. [PMID: 31920462 PMCID: PMC6947942 DOI: 10.1186/s12935-019-1093-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. METHODS The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. RESULTS We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. CONCLUSION TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.
Collapse
Affiliation(s)
- Qun Dai
- 0000 0004 1762 1794grid.412558.fDepartment of Pediatric, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 China
| | - Jingyi Deng
- 0000 0004 1762 1794grid.412558.fDepartment of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 China
| | - Jinrong Zhou
- 0000 0004 1762 1794grid.412558.fDepartment of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 China
| | - Zhuhong Wang
- 0000 0004 1762 1794grid.412558.fDepartment of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 China
| | - Xiao-feng Yuan
- 0000 0004 1762 1794grid.412558.fDepartment of General Intensive Care Unit Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 China
| | - Shunwen Pan
- 0000 0004 1762 1794grid.412558.fDepartment of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630 China
| | - Hong-bin Zhang
- 0000 0004 1762 1794grid.412558.fDepartment of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou, 510630 China
| |
Collapse
|
4
|
Zhang K, Fan Z, Weng J, Zhao J, Wang J, Wu H, Xie M, Zhou H, Li H. Peptide-Based Biosensing of Redox-Active Protein-Heme Complexes Indicates Novel Mechanism for Tumor Survival under Oxidative Stress. ACS Sens 2019; 4:2671-2678. [PMID: 31525915 DOI: 10.1021/acssensors.9b01083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal response of several relevant protein-cofactor interactions, united in one bioassay, may greatly enhance the ability to study the intriguing molecular mechanisms of pathological process such as the tumor immunological process of chronic inflammation and oxidative stress. Here, a peptide-based multiplexed bioassay has been developed and applied in studying the interactions among ferritin, p53, and heme under oxidative stress. In a malignant breast cancer cell line, it can be observed that oxidative stress-triggered nuclear co-translocations of heme and ferritin may lead to direct molecular contact of ferritin with p53, to pass heme to p53, which subsequently sequestered into the cytoplasm, therefore forming a possible new route of tumor survival under oxidative stress, by using the stress to circumvent oxidative stress-induced apoptosis. The observed peroxidase-like activity of ferritin-heme and p53-heme complexes may also contribute to survival. Such activity is observed most prominently in triple negative or the most malignant breast cancer subtype. These results may suggest the possible future use of this bioassay in furthering the understanding of tumor molecular pathology, as well as the early detection, diagnosis, and prognosis of cancer.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Zhenqiang Fan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiena Weng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaying Wang
- Department of Rehabilitation & Acupuncture and Moxibustion, Nanjing Medical University, Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu 214000, China
| | - Hao Wu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao Li
- School of Biological Science and Technology, University of Jinan, No. 106 Jiwei Road, Jinan, Shandong 250022, China
| |
Collapse
|
5
|
Zhang Q, Chen W, Lv X, Weng Q, Chen M, Cui R, Liang G, Ji J. Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress. Front Pharmacol 2019; 10:1180. [PMID: 31680962 PMCID: PMC6802400 DOI: 10.3389/fphar.2019.01180] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related deaths globally. Despite advances in diagnosis and treatment, the incidence and mortality of HCC continue to rise. Piperlongumine (PL), an alkaloid isolated from the fruit of the long pepper, is known to selectively kill tumor tissues while sparing their normal counterparts. However, the killing effects of PL on HCC and the underlying mechanism of PL are not clear. We report that PL may interact with thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, and induce reactive oxygen species (ROS)-mediated apoptosis in HCC cells. Our results suggest that PL induces a lethal endoplasmic reticulum (ER) stress response in HCC cells by targeting TrxR1 and increasing intracellular ROS levels. Notably, PL treatment reduces TrxR1 activity and tumor cell burden in vivo. Additionally, TrxR1 is significantly upregulated in existing HCC databases and available HCC clinical specimens. Taken together, these results suggest PL as a novel anticancer candidate for the treatment of HCC. More importantly, this study reveals that TrxR1 might be an effective target in treating HCC.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Xiuling Lv
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Ri Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| |
Collapse
|
6
|
Martin LF, Moço NP, de Lima MD, Polettini J, Miot HA, Corrêa CR, Menon R, da Silva MG. Histologic chorioamnionitis does not modulate the oxidative stress and antioxidant status in pregnancies complicated by spontaneous preterm delivery. BMC Pregnancy Childbirth 2017; 17:376. [PMID: 29132320 PMCID: PMC5684743 DOI: 10.1186/s12884-017-1549-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
Background Infection induced-inflammation and other risk factors for spontaneous preterm birth (PTB) and preterm premature rupture of membranes (pPROM) may cause a redox imbalance, increasing the release of free radicals and consuming antioxidant defenses. Oxidative stress, in turn, can initiate intracellular signaling cascades that increase the production of pro-inflammatory mediators. The objective of this study was to evaluate the oxidative damage to proteins and antioxidant capacity profiles in amniochorion membranes from preterm birth (PTB) and preterm premature rupture of membranes (pPROM) and to determine the role of histologic chorioamnionitis in this scenario. Methods We included 27 pregnant women with PTB, 27 pPROM and 30 at term. Protein oxidative damage was assayed by 3-nitrotyrosine (3-NT) and carbonyl levels, using enzyme-linked immunosorbent assay (ELISA) and modified dinitrophenylhydrazine assay (DNPH), respectively. Total antioxidant capacity (TAC) was measured by ELISA. Results Protein oxidative damage determined by carbonyl levels was lower in PTB group than pPROM and term groups (p < 0.001). PTB group presented higher TAC compared with pPROM and term groups (p = 0.002). Histologic chorioamnionitis did not change either protein oxidative damage or TAC regardless of gestational outcome. Conclusion These results corroborates previous reports that pPROM and term birth exhibit similarities in oxidative stress- induced senescence and histologic chorioamnionitis does not modulate oxidative stress or antioxidant status.
Collapse
Affiliation(s)
- Laura Fernandes Martin
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Distrito de Rubião Júnior, Botucatu, São Paulo, CEP 18618-686, Brazil
| | - Natália Prearo Moço
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Distrito de Rubião Júnior, Botucatu, São Paulo, CEP 18618-686, Brazil
| | - Moisés Diôgo de Lima
- Department of Gynecology and Obstetrics, Federal University of Paraíba, UFPB, João Pessoa, Brazil
| | | | - Hélio Amante Miot
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Distrito de Rubião Júnior, Botucatu, São Paulo, CEP 18618-686, Brazil
| | - Camila Renata Corrêa
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Distrito de Rubião Júnior, Botucatu, São Paulo, CEP 18618-686, Brazil
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Márcia Guimarães da Silva
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Distrito de Rubião Júnior, Botucatu, São Paulo, CEP 18618-686, Brazil.
| |
Collapse
|