1
|
Song Z, Bian W, Lin J, Guo Y, Shi W, Meng H, Chen Y, Zhang M, Liu Z, Lin Z, Ma K, Li L. Heart proteomic profiling discovers MYH6 and COX5B as biomarkers for sudden unexplained death. Forensic Sci Int 2024; 361:112121. [PMID: 38971138 DOI: 10.1016/j.forsciint.2024.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Sudden unexplained death (SUD) is not uncommon in forensic pathology. Yet, diagnosis of SUD remains challenging due to lack of specific biomarkers. This study aimed to screen differentially expressed proteins (DEPs) and validate their usefulness as diagnostic biomarkers for SUD cases. We designed a three-phase investigation, where in the discovery phase, formalin-fixed paraffin-embedded (FFPE) heart specimens were screened through label-free proteomic analysis of cases dying from SUD, mechanical injury and carbon monoxide (CO) intoxication. A total of 26 proteins were identified to be DEPs for the SUD cases after rigorous criterion. Bioinformatics and Adaboost-recursive feature elimination (RFE) analysis further revealed that three of the 26 proteins (MYH6, COX5B and TNNT2) were potential discriminative biomarkers. In the training phase, MYH6 and COX5B were verified to be true DEPs in cardiac tissues from 29 independent SUD cases as compared with a serial of control cases (n = 42). Receiver operating characteristic (ROC) analysis illustrated that combination of MYH6 and COX5B achieved optimal diagnostic sensitivity (89.7 %) and specificity (84.4 %), with area under the curve (AUC) being 0.91. A diagnostic software based on the logistic regression formula derived from the training phase was then constructed. In the validation phase, the diagnostic software was applied to eight authentic SUD cases, seven (87.5 %) of which were accurately recognized. Our study provides a valid strategy towards practical diagnosis of SUD by integrating cardiac MYH6 and COX5B as dual diagnostic biomarkers.
Collapse
Affiliation(s)
- Ziyan Song
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Wensi Bian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Yadong Guo
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei 050017, PR China.
| | - Hang Meng
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| | - Yuanyuan Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| | - Molin Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Kaijun Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei 050017, PR China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| |
Collapse
|
2
|
Venz S, von Bohlen Und Halbach V, Hentschker C, Junker H, Kuss AW, Sura T, Krüger E, Völker U, von Bohlen Und Halbach O, Jensen LR, Hammer E. Global Protein Profiling in Processed Immunohistochemistry Tissue Sections. Int J Mol Sci 2023; 24:11308. [PMID: 37511068 PMCID: PMC10379013 DOI: 10.3390/ijms241411308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Tissue sections, which are widely used in research and diagnostic laboratories and have already been examined by immunohistochemistry (IHC), may subsequently provide a resource for proteomic studies, even though only small amount of protein is available. Therefore, we established a workflow for tandem mass spectrometry-based protein profiling of IHC specimens and characterized defined brain area sections. We investigated the CA1 region of the hippocampus dissected from brain slices of adult C57BL/6J mice. The workflow contains detailed information on sample preparation from brain slices, including removal of antibodies and cover matrices, dissection of region(s) of interest, protein extraction and digestion, mass spectrometry measurement, and data analysis. The Gene Ontology (GO) knowledge base was used for further annotation. Literature searches and Gene Ontology annotation of the detected proteins verify the applicability of this method for global protein profiling using formalin-fixed and embedded material and previously used IHC slides.
Collapse
Affiliation(s)
- Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | | | - Christian Hentschker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Andreas Walter Kuss
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Thomas Sura
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | | | - Lars Riff Jensen
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
3
|
Zheng N, Taylor K, Gu H, Santockyte R, Wang XT, McCarty J, Adelakun O, Zhang YJ, Pillutla R, Zeng J. Antipeptide Immunocapture with In-Sample Calibration Curve Strategy for Sensitive and Robust LC-MS/MS Bioanalysis of Clinical Protein Biomarkers in Formalin-Fixed Paraffin-Embedded Tumor Tissues. Anal Chem 2020; 92:14713-14722. [PMID: 33047598 DOI: 10.1021/acs.analchem.0c03271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite huge promises, bioanalysis of protein biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for clinical applications is still very challenging. Here, we describe a sensitive and robust LC-MS/MS assay to quantify clinical protein biomarkers in FFPE tumor sections using automated antipeptide antibody immunocapture followed by in-sample calibration curve (ISCC) strategy with multiple isotopologue reaction monitoring (MIRM) technique. ISCC approach with MIRM of stable isotopically labeled (SIL) peptides eliminated the need for authentic matrices for external calibration curves, overcame the matrix effects, and validated the quantification range in each individual sample. Specifically, after deparaffinization, rehydration, antigen retrieval, and homogenization, the protein analytes in FFPE tumor tissues were spiked with a known concentration of one SIL peptide for each analyte, followed by trypsin digestion and antipeptide immunocapture enrichment prior to MIRM-ISCC-based LC-MS/MS analysis. This approach has been successfully used for sensitive quantification of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) in 15 representative FFPE tumor samples from lung, colorectal, and head and neck cancer patients. Except for one sample, PD-L1 and PD-1 in all samples were quantifiable using this assay with concentrations of 27.85-798.43 (amol/μg protein) for PD-L1 and 16.96-129.89 (amol/μg protein) for PD-1. These results were generally in agreement with the immunohistochemistry (IHC) data but with some exceptions. This approach demonstrated the feasibility to quantify low abundant protein biomarkers in FFPE tissues with improved sensitivity, specificity, and robustness and showed great potential as an orthogonal analytical approach to IHC for clinical applications.
Collapse
Affiliation(s)
- Naiyu Zheng
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Kristin Taylor
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Huidong Gu
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Rasa Santockyte
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xi-Tao Wang
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jean McCarty
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Olufemi Adelakun
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Yan J Zhang
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Renuka Pillutla
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jianing Zeng
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
4
|
Giusti L, Angeloni C, Lucacchini A. Update on proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics 2019; 16:513-520. [DOI: 10.1080/14789450.2019.1615452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Longuespée R, Casadonte R, Schwamborn K, Kriegsmann M. Proteomics in Pathology: The Special Issue. Proteomics Clin Appl 2019; 13:e1800167. [PMID: 30730117 DOI: 10.1002/prca.201800167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rémi Longuespée
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| | | | - Kristina Schwamborn
- Institute of Pathology, Technical University of Munich, 81675, Munich, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|