1
|
López-Cortés R, Vázquez-Estévez S, Fernández JÁ, Núñez C. Proteomics as a Complementary Technique to Characterize Bladder Cancer. Cancers (Basel) 2021; 13:cancers13215537. [PMID: 34771699 PMCID: PMC8582709 DOI: 10.3390/cancers13215537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immunohistochemistry is a routine technique in clinics, and genomics has been rapidly incorporated, proteomics is a step behind. This general situation is also the norm in bladder cancer research. This review shows the contributions of proteomics to the molecular classification of bladder cancer, and to the study of histopathology due to tissue insults caused by tumors. Furthermore, the importance of proteomics for understanding the cellular and molecular changes as a consequence of the therapy of bladder cancer cannot be neglected. Abstract Bladder cancer (BC) is the most common tumor of the urinary tract and is conventionally classified as either non-muscle invasive or muscle invasive. In addition, histological variants exist, as organized by the WHO-2016 classification. However, innovations in next-generation sequencing have led to molecular classifications of BC. These innovations have also allowed for the tracing of major tumorigenic pathways and, therefore, are positioned as strong supporters of precision medicine. In parallel, immunohistochemistry is still the clinical reference to discriminate histological layers and to stage BC. Key contributions have been made to enlarge the panel of protein immunomarkers. Moreover, the analysis of proteins in liquid biopsy has also provided potential markers. Notwithstanding, their clinical adoption is still low, with very few approved tests. In this context, mass spectrometry-based proteomics has remained a step behind; hence, we aimed to develop them in the community. Herein, the authors introduce the epidemiology and the conventional classifications to review the molecular classification of BC, highlighting the contributions of proteomics. Then, the advances in mass spectrometry techniques focusing on maintaining the integrity of the biological structures are presented, a milestone for the emergence of histoproteomics. Within this field, the review then discusses selected proteins for the comprehension of the pathophysiological mechanisms of BC. Finally, because there is still insufficient knowledge, this review considers proteomics as an important source for the development of BC therapies.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Javier Álvarez Fernández
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence:
| |
Collapse
|
2
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Alexovič M, Sabo J, Longuespée R. Microproteomic sample preparation. Proteomics 2021; 21:e2000318. [PMID: 33547857 DOI: 10.1002/pmic.202000318] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Multiple applications of proteomics in life and health science, pathology and pharmacology, require handling size-limited cell and tissue samples. During proteomic sample preparation, analyte loss in these samples arises when standard procedures are used. Thus, specific considerations have to be taken into account for processing, that are summarised under the term microproteomics (μPs). Microproteomic workflows include: sampling (e.g., flow cytometry, laser capture microdissection), sample preparation (possible disruption of cells or tissue pieces via lysis, protein extraction, digestion in bottom-up approaches, and sample clean-up) and analysis (chromatographic or electrophoretic separation, mass spectrometric measurements and statistical/bioinformatic evaluation). All these steps must be optimised to reach wide protein dynamic ranges and high numbers of identifications. Under optimal conditions, sampling is adapted to the studied sample types and nature, sample preparation isolates and enriches the whole protein content, clean-up removes salts and other interferences such as detergents or chaotropes, and analysis identifies as many analytes as the instrumental throughput and sensitivity allow. In the suggested review, we present and discuss the current state in μP applications for processing of small number of cells (cell μPs) and microscopic tissue regions (tissue μPs).
Collapse
Affiliation(s)
- Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Tuck M, Blanc L, Touti R, Patterson NH, Van Nuffel S, Villette S, Taveau JC, Römpp A, Brunelle A, Lecomte S, Desbenoit N. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Anal Chem 2020; 93:445-477. [PMID: 33253546 DOI: 10.1021/acs.analchem.0c04595] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Tuck
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Landry Blanc
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Rita Touti
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
| | - Sebastiaan Van Nuffel
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sandrine Villette
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Jean-Christophe Taveau
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alain Brunelle
- Laboratoire d'Archéologie Moléculaire et Structurale, LAMS UMR 8220, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Sophie Lecomte
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nicolas Desbenoit
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| |
Collapse
|
5
|
Möginger U, Marcussen N, Jensen ON. Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections. Oncotarget 2020; 11:3998-4015. [PMID: 33216824 PMCID: PMC7646834 DOI: 10.18632/oncotarget.27787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/10/2020] [Indexed: 12/24/2022] Open
Abstract
Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass spectrometry can provide detailed histo-molecular information on tissue and is becoming increasingly popular in clinical settings. Spatially resolving technologies such as mass spectrometry imaging and quantitative microproteomics profiling in combination with machine learning approaches provide promising tools for automated tumor classification of clinical tissue sections. In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, n = 11), clear cell renal cell carcinoma (ccRCC, n = 12) and chromophobe renal cell carcinoma (ChRCC, n = 5). Both methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 100% of the patients. This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular features of tumor sections and enables cancer subtype classification. Mass spectrometry provides a promising complementary approach to current pathological technologies for precise digitized diagnosis of diseases.
Collapse
Affiliation(s)
- Uwe Möginger
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark.,Present address: Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, Bagsværd, Denmark
| | - Niels Marcussen
- Institute for Pathology, Odense University Hospital, Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Giusti L, Angeloni C, Lucacchini A. Update on proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics 2019; 16:513-520. [DOI: 10.1080/14789450.2019.1615452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|