1
|
Ortega Duran M, Shaheed SU, Sutton CW, Shnyder SD. A Proteomic Investigation to Discover Candidate Proteins Involved in Novel Mechanisms of 5-Fluorouracil Resistance in Colorectal Cancer. Cells 2024; 13:342. [PMID: 38391955 PMCID: PMC10886605 DOI: 10.3390/cells13040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
One of the main obstacles to therapeutic success in colorectal cancer (CRC) is the development of acquired resistance to treatment with drugs such as 5-fluorouracil (5-FU). Whilst some resistance mechanisms are well known, it is clear from the stasis in therapy success rate that much is still unknown. Here, a proteomics approach is taken towards identification of candidate proteins using 5-FU-resistant sublines of human CRC cell lines generated in house. Using a multiplexed stable isotope labelling with amino acids in cell culture (SILAC) strategy, 5-FU-resistant and equivalently passaged sensitive cell lines were compared to parent cell lines by growing in Heavy medium with 2D liquid chromatography and Orbitrap Fusion™ Tribrid™ Mass Spectrometry analysis. Among 3003 commonly quantified proteins, six (CD44, APP, NAGLU, CORO7, AGR2, PLSCR1) were found up-regulated, and six (VPS45, RBMS2, RIOK1, RAP1GDS1, POLR3D, CD55) down-regulated. A total of 11 of the 12 proteins have a known association with drug resistance mechanisms or role in CRC oncogenesis. Validation through immunodetection techniques confirmed high expression of CD44 and CD63, two known drug resistance mediators with elevated proteomics expression results. The information revealed by the sensitivity of this method warrants it as an important tool for elaborating the complexity of acquired drug resistance in CRC.
Collapse
Affiliation(s)
- Mario Ortega Duran
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Sadr Ul Shaheed
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9BQ, UK
| | | | - Steven D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
2
|
Bihani S, Gupta A, Mehta S, Rajczewski AT, Johnson J, Borishetty D, Griffin TJ, Srivastava S, Jagtap PD. Metaproteomic Analysis of Nasopharyngeal Swab Samples to Identify Microbial Peptides in COVID-19 Patients. J Proteome Res 2023; 22:2608-2619. [PMID: 37450889 DOI: 10.1021/acs.jproteome.3c00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During the COVID-19 pandemic, impaired immunity and medical interventions resulted in cases of secondary infections. The clinical difficulties and dangers associated with secondary infections in patients necessitate the exploration of their microbiome. Metaproteomics is a powerful approach to study the taxonomic composition and functional status of the microbiome under study. In this study, the mass spectrometry (MS)-based data of nasopharyngeal swab samples from COVID-19 patients was used to investigate the metaproteome. We have established a robust bioinformatics workflow within the Galaxy platform, which includes (a) generation of a tailored database of the common respiratory tract pathogens, (b) database search using multiple search algorithms, and (c) verification of the detected microbial peptides. The microbial peptides detected in this study, belong to several opportunistic pathogens such as Streptococcus pneumoniae, Klebsiella pneumoniae, Rhizopus microsporus, and Syncephalastrum racemosum. Microbial proteins with a role in stress response, gene expression, and DNA repair were found to be upregulated in severe patients compared to negative patients. Using parallel reaction monitoring (PRM), we confirmed some of the microbial peptides in fresh clinical samples. MS-based clinical metaproteomics can serve as a powerful tool for detection and characterization of potential pathogens, which can significantly impact the diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Surbhi Bihani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Aryan Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Andrew T Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - James Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dhanush Borishetty
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Sanjeeva Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Lobbes LA, Schütze MA, Droeser R, Arndt M, Pozios I, Lauscher JC, Hering NA, Weixler B. Muscarinic Acetylcholine Receptor M3 Expression and Survival in Human Colorectal Carcinoma-An Unexpected Correlation to Guide Future Treatment? Int J Mol Sci 2023; 24:ijms24098198. [PMID: 37175905 PMCID: PMC10179005 DOI: 10.3390/ijms24098198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Muscarinic acetylcholine receptor M3 (M3R) has repeatedly been shown to be prominently expressed in human colorectal cancer (CRC), playing roles in proliferation and cell invasion. Its therapeutic targetability has been suggested in vitro and in animal models. We aimed to investigate the clinical role of MR3 expression in CRC for human survival. Surgical tissue samples from 754 CRC patients were analyzed for high or low immunohistochemical M3R expression on a clinically annotated tissue microarray (TMA). Immunohistochemical analysis was performed for established immune cell markers (CD8, TIA-1, FOXP3, IL 17, CD16 and OX 40). We used Kaplan-Meier curves to evaluate patients' survival and multivariate Cox regression analysis to evaluate prognostic significance. High M3R expression was associated with increased survival in multivariate (hazard ratio (HR) = 0.52; 95% CI = 0.35-0.78; p = 0.001) analysis, as was TIA-1 expression (HR = 0.99; 95% CI = 0.94-0.99; p = 0.014). Tumors with high M3R expression were significantly more likely to be grade 2 compared to tumors with low M3R expression (85.7% vs. 67.1%, p = 0.002). The 5-year survival analysis showed a trend of a higher survival rate in patients with high M3R expression (46%) than patients with low M3R expression CRC (42%) (p = 0.073). In contrast to previous in vitro and animal model findings, this study demonstrates an increased survival for CRC patients with high M3R expression. This evidence is highly relevant for translation of basic research findings into clinically efficient treatments.
Collapse
Affiliation(s)
- Leonard A Lobbes
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marcel A Schütze
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Raoul Droeser
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, CH-4058 Basel, Switzerland
| | - Marco Arndt
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ioannis Pozios
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Johannes C Lauscher
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nina A Hering
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Benjamin Weixler
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
4
|
Barpanda A, Biswas D, Verma A, Parihari S, Singh A, Kapoor S, Kantharia C, Srivastava S. Integrative Proteomic and Pharmacological Analysis of Colon Cancer Reveals the Classical Lipogenic Pathway with Prognostic and Therapeutic Opportunities. J Proteome Res 2023; 22:871-884. [PMID: 36731020 DOI: 10.1021/acs.jproteome.2c00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite recent advancements, the high mortality rate remains a concern in colon cancer (CAC). Identification of therapeutic markers could prove to be a great asset in CAC management. Multiple studies have reported hyperactivation of de novo lipogenesis (DNL), but its association with the pathology is unclear. This study aims to establish the importance as well as the prognostic and therapeutic potential of DNL in CAC. The key lipogenic enzymes fatty acid synthase along with ATP citrate lyase were quantified using an LC-MS/MS-based targeted proteomics approach in the samples along with the matched controls. The potential capacity of the proteins to distinguish between the tumor and controls was demonstrated using random forest-based class prediction analysis using the peptide intensities. Furthermore, in-depth proteomics of DNL inhibition in the CAC cell line revealed the significance of the pathway in proliferation and metastasis. DNL inhibition affected the major signaling pathways, including DNA repair, PI3K-AKT-mTOR pathway, membrane trafficking, proteasome, etc. The study revealed the upregulation of 26S proteasome machinery as a result of the treatment with subsequent induction of apoptosis. Again, in silico molecular docking-based drug repurposing was performed to find potential drug candidates. Furthermore, we have demonstrated that blocking DNL could be explored as a therapeutic option in CAC treatment.
Collapse
Affiliation(s)
- Abhilash Barpanda
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076 Maharashtra, India.,Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai 400076 Maharashtra, India
| | - Deeptarup Biswas
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076 Maharashtra, India
| | - Ayushi Verma
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076 Maharashtra, India
| | - Shashwati Parihari
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076 Maharashtra, India
| | - Avinash Singh
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076 Maharashtra, India
| | - Shobhna Kapoor
- Department of Chemistry, IIT Bombay, Mumbai 400076 Maharashtra, India
| | - Chetan Kantharia
- Department of Surgical Gastroenterology, Seth G.S. Medical College and KEM Hospital, Mumbai 400076 Maharashtra, India
| | - Sanjeeva Srivastava
- Proteomics Lab, Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076 Maharashtra, India.,Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai 400076 Maharashtra, India
| |
Collapse
|
5
|
Barpanda A, Halder A, Dhote A, Parihari S, Kantharia C, Srivastava S. Colon Adenocarcinoma Quantitative Proteomics Reveals Dysregulation in Key Cancer Signaling Pathways and a Candidate Protein Marker Panel. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:75-85. [PMID: 36730729 DOI: 10.1089/omi.2022.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) is reportedly the second leading cause of cancer death worldwide. By the end of the decade, there will likely be more than one million fatalities worldwide from this cancer, with an estimated 2.2 million additional cases. We need new ways of thinking about cancer research. One approach is to deploy systems science using quantitative proteomics to obtain postgenomic and functional insights into cancer. The present study compares the tissue proteome of CRC (n = 10) with the matched peritumoral controls (n = 10) in samples obtained from the Indian subcontinent. When compared with the controls, a list of 22 substantially altered protein candidates was identified, which were associated with the growth, survival, and metastasis of the tumor. A list of the unique peptides from top significant proteins, including olfactomedin-4, alanyl aminopeptidase, and grancalcin was further validated using a parallel reaction monitoring-based targeted proteomics approach. In addition, biological pathway analysis showed perturbation in key biological processes, including dysregulation in purine metabolism, MYC targets in cancer, DNA repair, and replication, and leukocyte transendothelial migration, among others. The protein panel reported herein is also shown to be dysregulated in CRC and warrants further research toward understanding pathobiology, diagnostics, and therapeutics development in CRC.
Collapse
Affiliation(s)
- Abhilash Barpanda
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.,Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ankit Halder
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ayushi Dhote
- Saint Francis de Sales College, Nagpur, Maharashtra, India
| | - Shashwati Parihari
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Chetan Kantharia
- Department of Surgical Gastroenterology, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.,Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|