1
|
Mathias S, Amerio-Cox M, Jackson T, Douce D, McCullough B, Sage A, Luke P, Crean C, Sears P. Performance Comparison of Ambient Ionization Techniques Using a Single Quadrupole Mass Spectrometer for the Analysis of Amino Acids, Drugs, and Explosives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2480-2489. [PMID: 39221767 PMCID: PMC11457451 DOI: 10.1021/jasms.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The utilization of ambient ionization (AI) techniques for mass spectrometry (MS) has significantly grown due to their ability to facilitate rapid and direct sample analysis with minimal sample preparation. This study investigates the performance of various AI techniques, including atmospheric solids analysis probe (ASAP), thermal desorption corona discharge (TDCD), direct analysis in real time (DART), and paper spray coupled to a Waters QDa mass spectrometer. The focus is on evaluating the linearity, repeatability, and limit of detection (LOD) of these techniques across a range of analytes, including amino acids, drugs, and explosives. The results show that each AI technique exhibits distinct advantages and limitations. ASAP and DART cover high concentration ranges, which may make them suitable for semiquantitative analysis. TDCD demonstrates exceptional linearity and repeatability for most analytes, while paper spray offers surprising LODs despite its complex setup (between 80 and 400 pg for most analytes). The comparison with electrospray ionization (ESI) as a standard method shows that ambient ionization techniques can achieve competitive LODs for various compounds such as PETN (80 pg ESI vs 100 pg ASAP), TNT (9 pg ESI vs 4 pg ASAP), and RDX (4 pg ESI vs 10 pg ASAP). This study underscores the importance of selecting the appropriate ambient ionization technique based on the specific analytical requirements. This comprehensive evaluation contributes valuable insights into the selection and optimization of AI techniques for diverse analytical applications.
Collapse
Affiliation(s)
- Simone Mathias
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Marius Amerio-Cox
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Toni Jackson
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - David Douce
- Waters
Corporation, Stamford
Avenue, Wilmslow SK9 4AX, U.K.
| | | | - Ashley Sage
- Waters
Corporation, Stamford
Avenue, Wilmslow SK9 4AX, U.K.
| | - Peter Luke
- Mass
Spec Analytical, Future Space UWE North Gate, Bristol BS34 8RB, U.K.
| | - Carol Crean
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Patrick Sears
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
2
|
Mathias S, Amerio-Cox M, Jackson T, Douce D, Sage A, Luke P, Sleeman R, Crean C, Sears P. Selectivity of Explosives Analysis with Ambient Ionization Single Quadrupole Mass Spectrometry: Implications for Trace Detection. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:50-61. [PMID: 38086767 PMCID: PMC10767746 DOI: 10.1021/jasms.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/04/2024]
Abstract
Ambient ionization (AI) is a rapidly growing field in mass spectrometry (MS). It allows for the direct analysis of samples without any sample preparation, making it a promising technique for the detection of explosives. Previous studies have shown that AI can be used to detect a variety of explosives, but the exact gas-phase reactions that occur during ionization are not fully understood. This is further complicated by differences in mass spectrometers and individual experimental set ups between researchers. This study investigated the gas-phase ion reactions of five different explosives using a variety of AI techniques coupled to a Waters QDa mass spectrometer to identify selective ions for explosive detection and identification based on the applied ambient ionization technique. The results showed that the choice of the ion source can have a significant impact on the number of ions observed. This can affect the sensitivity and selectivity of the data produced. The findings of this study provide new insights into the gas-phase ion reactions of explosives and could lead to the development of more sensitive and selective AI-based methods for their detection.
Collapse
Affiliation(s)
- Simone Mathias
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Marius Amerio-Cox
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Toni Jackson
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - David Douce
- Waters
Corporation, Stamford
Avenue, Wilmslow SK9 4AX, U.K.
| | - Ashley Sage
- Waters
Corporation, Stamford
Avenue, Wilmslow SK9 4AX, U.K.
| | - Peter Luke
- Mass
Spec Analytical, Future Space UWE North Gate, Bristol BS34 8RB, U.K.
| | - Richard Sleeman
- Mass
Spec Analytical, Future Space UWE North Gate, Bristol BS34 8RB, U.K.
| | - Carol Crean
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Patrick Sears
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
3
|
Prunty S, Carmany D, Dhummakupt ES, Manicke NE. Combining presumptive color tests, pressure-sensitive adhesive-based collection, and paper spray-mass spectrometry for illicit drug detection. Analyst 2023. [PMID: 37377186 DOI: 10.1039/d3an00559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Illicit drug trafficking and abuse is a significant public safety and health concern. Color tests are commonly used for drug screening, but their poor specificity results in false positives. This study demonstrates the combination of drug residue collection using pressure-sensitive adhesive paper, on-paper color testing, and post-reaction analysis by paper spray mass spectrometry (PS-MS) on both portable and benchtop ion trap MS. All steps, including residue collection, color testing, and paper spray analysis, were performed on the same piece of paper. Three common color tests were investigated: the cobalt thiocyanate test for cocaine, the Simon test for methamphetamine, and the Marquis test for phenethylamine stimulants and opiates. The detection threshold for color tests ranged from 1.25 to 10 μg on paper. Drug residues were successfully confirmed by paper spray MS at the color test threshold in all cases, except for heroin after reaction with the Marquis reagent, when using the portable MS. In this case, the MS detection threshold was 4-fold higher than the color test threshold. The stability of the color test products was assessed through a time study. Drug residues could be detected by MS at least 24 hours after reaction. A series of realistic samples, including false positives, were analyzed to demonstrate the technique's utility in real-world scenarios. Overall, combining color tests with PS-MS offers a rapid, low-cost method for the collection and analysis of illicit drugs.
Collapse
Affiliation(s)
- Sarah Prunty
- Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | | | | | - Nicholas E Manicke
- Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Mahbub P, Hasan CK, Rudd D, Voelcker NH, Orbell J, Cole I, Macka M. Rapid and selective screening of organic peroxide explosives using acid-hydrolysis induced chemiluminescence. Anal Chim Acta 2023; 1255:341156. [PMID: 37032060 DOI: 10.1016/j.aca.2023.341156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Organic peroxide explosives (OPEs) are unstable, non-military, contemporary security threats often found in improvised explosive devices. Chemiluminescence (CL) can be used to detect OPEs, via radical formation consisting of peroxide moieties (-O-O-) under acidic conditions. However, selectivity for specific OPEs is hampered by the ubiquitous background of H2O2. Herein, we report the differentiation of hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP), and methyl ethyl ketone peroxide (MEKP) by specific flow injection analysis-CL (FIA-CL) signal profiles, after H2SO4 treatment. The radical degradation pathway of each structure, and its corresponding FIA-CL profile, was explored using mass spectrometry to reveal the rapid loss of -O-O- from TATP and HMTD structures, while MEKP formed CL signal-sustaining oligomers, as opposed to the immediate attenuation of H2O2. The CL response for OPEs in an aqueous media, measured via the described FIA-CL method, enabled ultra-trace limits of detection down to 0.40 μM for MEKP, 0.43 μM for HMTD, and 0.40 μM for TATP (combined linear range 1-83 μM with 95% confidence limit, n = 12). Expanded uncertainties of measurement (UM) of MEKP = ±0.98, HMTD = ±1.03, and TATP = ±1.1 (UM included probabilities of false positive and false negative as well as standard deviations of % recoveries and limit of detections of OPEs). Direct aqueous sample introduction via FIA-CL thus offers the prospect of rapid and selective screening of OPEs in security-heightened settings (e.g., airports), averting false positives from more ubiquitous H2O2.
Collapse
|
5
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
6
|
Li L, Zhang T, Ge W, He X, Zhang Y, Wang X, Li P. Detection of Trace Explosives Using a Novel Sample Introduction and Ionization Method. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144551. [PMID: 35889424 PMCID: PMC9320169 DOI: 10.3390/molecules27144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
A novel sample introduction and ionization method for trace explosives detection is proposed and investigated herein, taking into consideration real-world application requirements. A thermal desorption sampling method and dielectric barrier discharge ionization (DBDI) source, with air as the discharge gas, were developed. The counter flow method was adopted firstly into the DBDI source to remove the interference of ozone and other reactive nitrogen oxides. A separated reaction region with an ion guiding electric field was developed for ionization of the sample molecules. Coupled with a homemade miniature digital linear ion trap mass spectrometer, this compact and robust design, with further optimization, has the advantages of soft ionization, a low detection limit, is free of reagent and consumable gas, and is an easy sample introduction. A range of common nitro-based explosives including TNT, 2,4-DNT, NG, RDX, PETN, and HMX has been studied. A linear response in the range of two orders of magnitude with a limit of detection (LOD) of 0.01 ng for TNT has been demonstrated. Application to the detection of real explosives and simulated mixed samples has also been explored. The work paves the path to developing next generation mass spectrometry (MS) based explosive trace detectors (ETDs).
Collapse
Affiliation(s)
- Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Tianyi Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Wei Ge
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Xingli He
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Yunjing Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China; (L.L.); (T.Z.); (W.G.); (X.H.); (Y.Z.)
- Correspondence: ; Tel.: +86-13656249881
| |
Collapse
|
7
|
Nguyen CB, Wichert WRA, Carmany DO, McBride EM, Mach PM, Dhummakupt ES, Glaros T, Manicke NE. Pressure-Sensitive Adhesive Combined with Paper Spray Mass Spectrometry for Low-Cost Collection and Analysis of Drug Residues. Anal Chem 2021; 93:13467-13474. [PMID: 34582178 DOI: 10.1021/acs.analchem.1c02050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Illicit drug use causes over half a million deaths worldwide every year. Drugs of abuse are commonly smuggled through customs and border checkpoints and, increasingly, through parcel delivery services. Improved methods for detection of trace drug residues from surfaces are needed. Such methods should be robust, fieldable, sensitive, and capable of detecting a wide range of drugs. In this work, commercially produced paper with a pressure-sensitive adhesive coating was utilized for the collection and analysis of trace drug residues by paper spray mass spectrometry (MS). This modified substrate was used to combine sample collection of drug residues from surfaces with rapid detection using a single paper spray ticket. The all-in-one ticket was used to probe different surfaces commonly encountered in forensic work including clothing, cardboard, glass, concrete, asphalt, and aluminum. A total of 10 drugs (acetyl fentanyl, fentanyl, clonazolam, cocaine, heroin, ketamine, methamphetamine, methylone, U-47700, and XLR-11) were evaluated and found to be detectable in the picogram range using a benchtop mass spectrometer and in the low nanogram range using a portable ion trap MS. The novel approach demonstrates a simple yet effective sampling strategy, allowing for rapid identification from difficult surfaces via paper spray mass spectrometry.
Collapse
Affiliation(s)
- Chau Bao Nguyen
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - William R A Wichert
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Daniel O Carmany
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21010, United States
| | | | - Phillip M Mach
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21010, United States
| | - Elizabeth S Dhummakupt
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21010, United States
| | - Trevor Glaros
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21010, United States
| | - Nicholas E Manicke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
8
|
Feider CL, Gatmaitan AN, Hooper T, Chakraborty A, Gowda P, Buchanan E, Eberlin LS. Integrating the MasSpec Pen with Sub-Atmospheric Pressure Chemical Ionization for Rapid Chemical Analysis and Forensic Applications. Anal Chem 2021; 93:7549-7556. [PMID: 34008955 DOI: 10.1021/acs.analchem.1c00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analytical methods that allow rapid, sensitive, and specific chemical measurements are central to forensic analysis and essential to accelerating compound screening and confirmation. We have previously reported the development of the MasSpec Pen technology as an easy-to-use and disposable hand-held device integrated to a mass spectrometer for direct analysis and molecular profiling of biological samples. In this Technical Note, we describe a new apparatus that integrates the MasSpec Pen device with a subatmospheric pressure chemical ionization (sub-APCI) source and an ion trap mass spectrometer for detection and semiquantitative analysis of forensic-related compounds. Coupling the MasSpec Pen device to a sub-APCI source allowed semiquantitative analysis of the drugs cocaine and oxycodone, the agrochemicals atrazine and azoxystrobin, and the explosives trinitrotoluene and dinitroglycerin in under 20 s. Using chemical ionization, improved reproducibility and sensitivity for targeted chemical detection and compound identification was achieved while maintaining the user-friendly features of the hand-held MasSpec Pen device. Limits of detection in the high picogram to low nanogram range were obtained for the compounds analyzed, which are within the range of federal screening cutoffs and those reported for other ambient ionization MS techniques. Altogether, the MasSpec Pen sub-APCI system described enabled rapid and semiquantitative chemical analysis for forensic applications and could be further adapted and applied to other areas of chemical testing.
Collapse
Affiliation(s)
- Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Abigail N Gatmaitan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tim Hooper
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ashish Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Prajwal Gowda
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Emily Buchanan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Paper spray ionization-high-resolution mass spectrometry (PSI-HRMS) of peroxide explosives in biological matrices. Anal Bioanal Chem 2021; 413:3069-3079. [PMID: 33723626 DOI: 10.1007/s00216-021-03244-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
Mitigation of the peroxide explosive threat, specifically triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), is a priority among the law enforcement community, as scientists and canine (K9) units are constantly working to improve detection. We propose the use of paper spray ionization-high-resolution mass spectrometry (PSI-HRMS) for detection of peroxide explosives in biological matrices. Occurrence of peroxide explosives and/or their metabolites in biological samples, obtained from urine or blood tests, give scientific evidence of peroxide explosives exposure. PSI-HRMS promote analysis of samples in situ by eliminating laborious sample preparation steps. However, it increases matrix background issues, which were overcome by the formation of multiple alkali metal adducts with the peroxide explosives. Multiple ion formation increases confidence when identifying these peroxide explosives in direct sample analysis. Our previous work examined aspects of TATP metabolism. Herein, we investigate the excretion of a TATP glucuronide conjugate in the urine of bomb-sniffing dogs and demonstrate its detection using PSI from the in vivo sample.
Collapse
|
10
|
Brown HM, McDaniel TJ, Fedick PW, Mulligan CC. The current role of mass spectrometry in forensics and future prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3974-3997. [PMID: 32720670 DOI: 10.1039/d0ay01113d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry (MS) techniques are highly prevalent in crime laboratories, particularly those coupled to chromatographic separations like gas chromatography (GC) and liquid chromatography (LC). These methods are considered "gold standard" analytical techniques for forensic analysis and have been extensively validated for producing prosecutorial evidentiary data. However, factors such as growing evidence backlogs and problematic evidence types (e.g., novel psychoactive substance (NPS) classes) have exposed limitations of these stalwart techniques. This critical review serves to delineate the current role of MS methods across the broad sub-disciplines of forensic science, providing insight on how governmental steering committees guide their implementation. Novel, developing techniques that seek to broaden applicability and enhance performance will also be highlighted, from unique modifications to traditional hyphenated MS methods to the newer "ambient" MS techniques that show promise for forensic analysis, but need further validation before incorporation into routine forensic workflows. This review also expounds on how recent improvements to MS instrumental design, scan modes, and data processing could cause a paradigm shift in how the future forensic practitioner collects and processes target evidence.
Collapse
Affiliation(s)
- Hilary M Brown
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| | | | | | | |
Collapse
|
11
|
Pintabona L, Astefanei A, Corthals GL, van Asten AC. Utilizing Surface Acoustic Wave Nebulization (SAWN) for the Rapid and Sensitive Ambient Ionization Mass Spectrometric Analysis of Organic Explosives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2655-2669. [PMID: 31659718 PMCID: PMC6914713 DOI: 10.1007/s13361-019-02335-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
When considering incident investigations and security checks focused on energetic materials, there is an ongoing need for rapid, on-scene chemical identification. Currently applied methods are not capable of meeting all requirements, and hence, portable mass spectrometry is an interesting alternative although many instrumental challenges still exist. To be able to analyze explosives with mass spectrometry outside the traditional laboratory, suitable ambient ionization methods need to be developed. Ideally such methods are also easily implemented in the field requiring limited to no power sources, gas supplies, flow controllers, and heating devices. For this reason, the potential of SAWN (surface acoustic wave nebulization) for the ambient ionization and subsequent mass spectrometric (MS) analysis of organic explosives was investigated in this study. Excellent sensitivity was observed for nitrate-based organic explosives when operating the MS in negative mode. No dominant adduct peaks were observed for the peroxides TATP and HMTD with SAWN-MS in positive mode. The MS spectra indicate extensive fragmentation of the peroxide explosives even under the mild ionization conditions provided by SAWN. The potential of SAWN-MS was demonstrated with the correct identification of nitrate-based organic explosives in pre- and post-explosion case samples in only a fraction of the time and effort required for the regular laboratory analysis. Results show that SAWN-MS can convincingly identify intact organic energetic compounds and mixtures but that sensitivity is not always sufficient to detect traces of explosives in post-explosion residues.
Collapse
Affiliation(s)
- Lauren Pintabona
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - Alina Astefanei
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands.
| | - Arian C van Asten
- van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands.
- CLHC, Amsterdam Center for Forensic Science and Medicine, University of Amsterdam, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Costa C, van Es EM, Sears P, Bunch J, Palitsin V, Cooper H, Bailey MJ. Exploring a route to a selective and sensitive portable system for explosive detection- swab spray ionisation coupled to of high-field assisted waveform ion mobility spectrometry (FAIMS). Forensic Sci Int Synerg 2019; 1:214-220. [PMID: 32411973 PMCID: PMC7219150 DOI: 10.1016/j.fsisyn.2019.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/27/2022]
Abstract
Paper spray mass spectrometry is a rapid and sensitive tool for explosives detection but has so far only been demonstrated using high resolution mass spectrometry, which bears too high a cost for many practical applications. Here we explore the potential for paper spray to be implemented in field applications with portable mass spectrometry. This involved (a) replacing the paper substrate with a swabbing material (which we call “swab spray”) for compatibility with standard collection materials; (b) collection of explosives from surfaces; (c) an exploration of interferences within a ± 0.5 m/z window; and (d) demonstration of the use of high-field assisted waveform ion mobility spectrometer (FAIMS) for enhanced selectivity. We show that paper and Nomex® are viable collection materials, with Nomex providing cleaner spectra and therefore greater potential for integration with portable mass spectrometers. We show that sensitive detection using swab spray will require a mass spectrometer with a mass resolving power of 4000 or more. We show that by coupling the swab spray ionisation source with FAIMS, it is possible to reduce background interferences, thereby facilitating the use of a low resolving power (e.g. quadrupole) mass spectrometer.
Collapse
Affiliation(s)
- C Costa
- Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - E M van Es
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| | - P Sears
- Defence Science and Technology Laboratory, Sevenoaks, Kent, TN14 7BP, UK
| | - J Bunch
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| | - Vladimir Palitsin
- Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - H Cooper
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - M J Bailey
- Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
13
|
Costa C, Frampas C, Longman KA, Palitsin V, Ismail M, Sears P, Nilforooshan R, Bailey MJ. Paper spray screening and liquid chromatography/mass spectrometry confirmation for medication adherence testing: A two-step process. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 35:e8553. [PMID: 31414505 PMCID: PMC8047880 DOI: 10.1002/rcm.8553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 05/15/2023]
Abstract
RATIONALE Paper spray offers a rapid screening test without the need for sample preparation. The incomplete extraction of paper spray allows for further testing using more robust, selective and sensitive techniques such as liquid chromatography/mass spectrometry (LC/MS). Here we develop a two-step process of paper spray followed by LC/MS to (1) rapidly screen a large number of samples and (2) confirm any disputed results. This demonstrates the applicability for testing medication adherence from a fingerprint. METHODS Following paper spray analysis, drugs of abuse samples were analysed using LC/MS. All analyses were completed using a Q Exactive™ Plus Orbitrap™ mass spectrometer. This two-step procedure was applied to fingerprints collected from patients on a maintained dose of the antipsychotic drug quetiapine. RESULTS The extraction efficiency of paper spray for two drugs of abuse and metabolites was found to be between 15 and 35% (analyte dependent). For short acquisition times, the extraction efficiency was found to vary between replicates by less than 30%, enabling subsequent analysis by LC/MS. This two-step process was then applied to fingerprints collected from two patients taking the antipsychotic drug quetiapine, which demonstrates how a negative screening result from paper spray can be resolved using LC/MS. CONCLUSIONS We have shown for the first time the sequential analysis of the same sample using paper spray and LC/MS, as well as the detection of an antipsychotic drug from a fingerprint. We propose that this workflow may also be applied to any type of sample compatible with paper spray, and will be especially convenient where only one sample is available for analysis.
Collapse
Affiliation(s)
- Catia Costa
- Surrey Ion Beam CentreUniversity of SurreyGuildfordGU2 7XHUK
| | - Cecile Frampas
- Department of ChemistryUniversity of SurreyGuildfordGU2 7XHUK
| | | | | | - Mahado Ismail
- Department of ChemistryUniversity of SurreyGuildfordGU2 7XHUK
| | - Patrick Sears
- Department of ChemistryUniversity of SurreyGuildfordGU2 7XHUK
| | - Ramin Nilforooshan
- Surrey and Borders Partnership Foundation NHS Trust, ACUHolloway HillChertseyKT16 0AEUK
| | | |
Collapse
|