1
|
Fan M, Jiang X, Wang R, Pan L, Qi X, Song S, Wang Y, Zhang Q. One-Step Realization of Skeleton Editing, gem-Dinitromethyl Functionalization, and Zwitterionization in a Laser-Sensitive 1,3,4-Oxadiazole Energetic Molecule. Org Lett 2025; 27:840-845. [PMID: 39812076 DOI: 10.1021/acs.orglett.4c04504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The single-atom skeletal editing technology is an efficient method for constructing molecular skeletons, which has broad coverage in synthetic chemistry. However, its potential in the preparation of energetic heterocyclic molecules is grossly underexplored. In this work, an unexpected one-step reaction for the synthesis of novel energetic molecules was discovered which combines single-atom skeletal editing, gem-dinitromethyl functionalization, and zwitterionization in one step. The reaction demonstrates high efficiency while maintaining the characteristics of being mild and facile. The reaction mechanism was verified by experimental evidence and theoretical calculations. This reaction produces a novel energetic molecule (NPX-04) with good laser ignition performance, indicating its promise as a laser-sensitive energetic material.
Collapse
Affiliation(s)
- Mingren Fan
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China
| | - Xiu'e Jiang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China
| | - Ruihui Wang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China
| | - Linhu Pan
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China
| | - Xiujuan Qi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China
| | - Siwei Song
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China
| | - Yi Wang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China
| | - Qinghua Zhang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China
| |
Collapse
|
2
|
Yu Q, Chen YC, Guo Z, Li T, Liu Z, Yi W, Staples RJ, Shreeve JM. Energetic derivatives substituted with trinitrophenyl: improving the sensitivity of explosives. Dalton Trans 2024; 53:18467-18472. [PMID: 39240192 DOI: 10.1039/d4dt02070g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The incorporation of trinitrophenyl-modified 1,3,4-oxadiazole fragments is commonly observed in high-energy molecules with heat-resistant properties. This study explores the strategy of developing heat-resistant energetic materials by incorporating trinitrophenyl and an azo group into 1,3,4-oxadiazole, which involved the synthesis and characterization of (E)-1,2-bis(5-(2,4,6-trinitrophenyl)-1,3,4-oxadiazol-2-yl)diazene (2), N-(5-(2,4,6-trinitrophenyl)-1,3,4-oxadiazol-2-yl)nitramide (3), and the energetic salts of 3. Characterization techniques employed included 1H and 13C NMR, IR and elemental analysis. Additionally, the structures of 2 and 3 were validated using single crystal X-ray analysis. To further understand the physical and chemical characteristics of these novel energetic compounds, various calculations and measurements were performed. Compound 2 exhibits excellent thermostability (Td = 294 °C), which is comparable to that of traditional heat-resistant explosive HNS (Td = 318 °C). But 2 is insensitive towards impact (>40 J) and friction (>360 N), surpassing HNS (5 J, 240 N), suggesting that compound 2 deserves further investigation as a potential heat-resistant explosive.
Collapse
Affiliation(s)
- Qiong Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yu-Cong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Tao Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zunqi Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, USA
| |
Collapse
|
3
|
Gierczyk B, Zalas M, Otłowski T. High-Energetic Salts and Metal Complexes: Comprehensive Overview with a Focus on Use in Homemade Explosives (HME). Molecules 2024; 29:5588. [PMID: 39683747 DOI: 10.3390/molecules29235588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Metal-containing compounds form a large and rapidly expanding group of high-energy materials. Many compounds in this class attract the attention of non-professionals, who may attempt the illegal production of explosives. Several of these substances have been commercially available and pose significant danger if used by terrorists or for criminal purposes. Others are experimental compounds, kinds of curiosities, often created by pyrotechnics enthusiasts, which can present serious risks to both the creators and their immediate surroundings. The internet hosts a vast amount of information, including recipes and discussions on forums, private websites, social media, and more. This paper aims to review the variety of metal-containing explosives and discuss their appeal and potential accessibility to unauthorized individuals.
Collapse
Affiliation(s)
- Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Tomasz Otłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Sharma U, Kumar R, Mazumder A, Salahuddin, Kukreti N, Mishra R, Chaitanya MVNL. Substrate-based synthetic strategies and biological activities of 1,3,4-oxadiazole: A review. Chem Biol Drug Des 2024; 103:e14552. [PMID: 38825735 DOI: 10.1111/cbdd.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
The five-membered 1,3,4-oxadiazole heterocyclic ring has received considerable attention because of its unique bio-isosteric properties and an unusually wide spectrum of biological activities. After a century since 1,3,4-oxadiazole was discovered, its uncommon potential attracted medicinal chemist's attention, leading to the discovery of a few presently accessible drugs containing 1,3,4-oxadiazole units, and a large number of patents have been granted on research related to 1,3,4-oxadiazole. It is worth noting that interest in 1,3,4-oxadiazoles' biological applications has doubled in the last few years. Herein, this review presents a comprehensive overview of the recent achievements in the synthesis of 1,3,4-oxadiazole-based compounds and highlights the major advances in their biological applications in the last 10 years, as well as brief remarks on prospects for further development. We hope that researchers across the scientific streams will benefit from the presented review articles for designing their work related to 1,3,4-oxadiazoles.
Collapse
Affiliation(s)
- Upasana Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Rashmi Mishra
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - M V N L Chaitanya
- School of Pharmaceutical Science, Lovely Professional University, Phagwara, India
| |
Collapse
|
5
|
Sharma K, Maan A, Ghule VD, Dharavath S. Azo-Bridged Triazole Macrocycles: Computational Design, Energy Content, Performance, and Stability Assessment. J Phys Chem A 2023; 127:10128-10138. [PMID: 38015623 DOI: 10.1021/acs.jpca.3c05732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Oxadiazole and triazole are extensively investigated heterocyclic scaffolds in the development of energetic materials. New energetic molecules were designed by replacing 1,2,5-oxadiazole with 2H-1,2,3-triazole in the reported conjugated macrocyclic systems to assess the influence on the energetic properties and stability. In addition, nitro groups were introduced in triazole units (N-functionalization) to improve the energetic performance. Energetic properties, including heat of formation, oxygen balance, density, detonation pressure and velocity, and impact sensitivity, were estimated for these triazole-based macrocycles. The replacement of 1,2,5-oxadiazole with 2H-1,2,3-triazole and 2-nitro-1,2,3-triazole significantly enhances the energy content, detonation performance, and noncovalent interactions. The theoretically computed energetic properties of triazole-based macrocycles reveal high positive heats of formation (1507-2761 kJ/mol), oxygen balance (-88.8 to -22.8%), high densities (1.87-1.90 g/cm3), superior detonation velocities (8.41-9.52 km/s), pressures (26.64-40.55 GPa), acceptable impact sensitivity (27-40 cm), and safety factor (51-290). The overall energetic assessment highlights triazole-based macrocycles as a potential framework that will be useful for developing advanced energetic materials.
Collapse
Affiliation(s)
- Kalpana Sharma
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Anjali Maan
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Srinivas Dharavath
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
6
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
7
|
Synthesis of 2,5-disubstituted pyrazolyl-1,3,4-oxadiazoles by the Huisgen reaction. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Zhang Z, Chen X, Chen Y, Li Y, Nan H, Ma H. Synthesis and properties of a promising high energy and low impact sensitivity explosive: hydroxylammonium 3-hydrazino-6-(1H-1,2,3,4-tetrazol-5-ylimino)-s-tetrazine. FIREPHYSCHEM 2022. [DOI: 10.1016/j.fpc.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Sultan M, Wu J, Haq IU, Imran M, Yang L, Wu J, Lu J, Chen L. Recent Progress on Synthesis, Characterization, and Performance of Energetic Cocrystals: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154775. [PMID: 35897950 PMCID: PMC9330407 DOI: 10.3390/molecules27154775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/15/2023]
Abstract
In the niche area of energetic materials, a balance between energy and safety is extremely important. To address this "energy-safety contradiction", energetic cocrystals have been introduced. The investigation of the synthesis methods, characteristics, and efficacy of energetic cocrystals is of the utmost importance for optimizing their design and development. This review covers (i) various synthesis methods for energetic cocrystals; (ii) discusses their characteristics such as structural properties, detonation performance, sensitivity analysis, thermal properties, and morphology mapping, along with other properties such as oxygen balance, solubility, and fluorescence; and (iii) performance with respect to energy contents (detonation velocity and pressure) and sensitivity. This is followed by concluding remarks together with future perspectives.
Collapse
Affiliation(s)
- Manzoor Sultan
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
- Department of Physics, The University of Lahore, Lahore 54000, Pakistan;
| | - Junying Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
- Correspondence: ; Tel.: +86-136-914-20206
| | - Ihtisham Ul Haq
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Muhammad Imran
- Department of Physics, The University of Lahore, Lahore 54000, Pakistan;
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lijun Yang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - JiaoJiao Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - Jianying Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - Lang Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| |
Collapse
|
10
|
Recent Synthetic Efforts towards High Energy Density Materials: How to Design High-Performance Energetic Structures? FIREPHYSCHEM 2021. [DOI: 10.1016/j.fpc.2021.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Zeng L, Li J, Qiao C, Jiang Y, Wu J, Li H, Zhang J. Theoretical studies on new family of bridged difurazan derivatives with excellent heat of formation. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lian Zeng
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang P. R. China
| | - Junyan Li
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang P. R. China
| | - Chen Qiao
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang P. R. China
| | - Yuhe Jiang
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang P. R. China
| | - Jinting Wu
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang P. R. China
- State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing P. R. China
| | - Hongbo Li
- School of Materials Science and Engineering Southwest University of Science and Technology Mianyang P. R. China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing P. R. China
| |
Collapse
|