van Dijk E, Hoogeveen A, Abeln S. The hydrophobic temperature dependence of amino acids directly calculated from protein structures.
PLoS Comput Biol 2015;
11:e1004277. [PMID:
26000449 PMCID:
PMC4441443 DOI:
10.1371/journal.pcbi.1004277]
[Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/12/2015] [Indexed: 12/26/2022] Open
Abstract
The hydrophobic effect is the main driving force in protein folding. One can estimate the relative strength of this hydrophobic effect for each amino acid by mining a large set of experimentally determined protein structures. However, the hydrophobic force is known to be strongly temperature dependent. This temperature dependence is thought to explain the denaturation of proteins at low temperatures. Here we investigate if it is possible to extract this temperature dependence directly from a large set of protein structures determined at different temperatures. Using NMR structures filtered for sequence identity, we were able to extract hydrophobicity propensities for all amino acids at five different temperature ranges (spanning 265-340 K). These propensities show that the hydrophobicity becomes weaker at lower temperatures, in line with current theory. Alternatively, one can conclude that the temperature dependence of the hydrophobic effect has a measurable influence on protein structures. Moreover, this work provides a method for probing the individual temperature dependence of the different amino acid types, which is difficult to obtain by direct experiment.
In general, proteins become functional once they fold into a specific globular structure. On folding, hydrophobic amino acids get buried inside the protein such that they are shielded from the water; this hydrophobic effect makes a protein fold stable. However, the strength of the hydrophobicity is known to be strongly temperature dependent, leading for example to lower stability at lower temperatures (cold denaturation). Nevertheless, it is difficult to quantify the temperature dependence for hydrophobic amino acids. Here we are able to estimate the strength of the hydrophobic effect, by analysing the positions of a large number of amino acids from protein structures experimentally determined at different temperatures. For each amino acid type, we use the ratio between the number of residues at the inside and at the surface of the folded structures as a measure for its hydrophobicity. This approach shows that the hydrophobic effect becomes weaker at lower temperatures, as expected from theoretical predictions. Understanding the temperature dependence for amino acids, can help to make proteins (or enzymes) stable at a specific temperature range. For example, the design of enzymes that are stable and functional at low temperatures may benefit from this work.
Collapse