1
|
Kim H, Kim G, Park H, Lee MJ, Park Y, Jang S. Integrating holotomography and deep learning for rapid detection of NPM1 mutations in AML. Sci Rep 2024; 14:23780. [PMID: 39390137 PMCID: PMC11467337 DOI: 10.1038/s41598-024-75168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Rapid and accurate diagnosis of acute myeloid leukemia (AML) remains a significant challenge, particularly in the context of myelodysplastic syndrome (MDS) or MDS/myeloproliferative neoplasm with NPM1 mutations. This study introduces an innovative approach using holotomography (HT), a 3D label-free quantitative phase imaging technique, to detect NPM1 mutations. We analyzed a dataset of 2073 HT myeloblast images from 48 individuals, including both NPM1 wild-type and mutated samples, to distinguish subcellular morphological changes associated with NPM1 mutations. Employing a convolutional neural network, we analyzed 3D cell morphology, focusing on refractive index distributions. The machine learning model showed high accuracy, with an area under the receiver operating characteristic curve of 0.9375 and a validation accuracy of 76.0%. Our findings reveal distinct morphological differences between the NPM1 wild-type and mutation at the subcellular level. This study demonstrates the potential of HT combined with deep learning for early, efficient, and cost-effective diagnosis of AML, offering a promising alternative to traditional stepwise genetic testing methods and providing additional assistance in morphological myeloblast discrimination. This approach may revolutionize the diagnostic process in leukemia, facilitating early detection and potentially reducing the reliance on extensive genetic testing.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Geon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - HeyJung Park
- Department of Laboratory Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Mahn Jae Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Tomocube Inc., Daejeon, Republic of Korea.
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Shi Y, Chen X, Jin H, Zhu L, Hong M, Zhu Y, Wu Y, Qiu H, Wang Y, Sun Q, Jin H, Li J, Qian S, Qiao C. Clinical prognostic value of different NPM1 mutations in acute myeloid leukemia patients. Ann Hematol 2024; 103:2323-2335. [PMID: 38722387 DOI: 10.1007/s00277-024-05786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/29/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) patients with various nucleophosmin 1 (NPM1) mutations are controversial in the prognosis. This study aimed to investigate the prognosis of patients according to types of NPM1 mutations (NPM1mut). METHODS Bone marrow samples of 528 patients newly diagnosed with AML, were collected for morphology, immunology, cytogenetics, and molecular biology examinations. Gene mutations were detected by next-generation sequencing (NGS) technology. RESULTS About 25.2% of cases exhibited NPM1mut. 83.5% of cases were type A, while type B and D were respectively account for 2.3% and 3.0%. Furthermore, 15 cases of rare types were identified, of which 2 cases have not been reported. Clinical characteristics were similar between patients with A-type NPM1 mutations (NPM1A - type mut) and non-A-type NPM1 mutations (NPM1non - A-type mut). Event-free survival (EFS) was significantly different between patients with low NPM1non - A-type mut variant allele frequency (VAF) and low NPM1A - type mut VAF (median EFS = 3.9 vs. 8.5 months, P = 0.020). The median overall survival (OS) of the NPM1non - A-type mutFLT3-ITDmut group, the NPM1A - type mutFLT3-ITDmut group, the NPM1non - A-type mutFLT3-ITDwt group, and the NPM1A - type mutFLT3-ITDwt group were 3.9, 10.7, 17.3 and 18.8 months, while the median EFS of the corresponding groups was 1.4, 5.0, 7.6 and 9.2 months (P < 0.0001 and P = 0.004, respectively). CONCLUSIONS No significant difference was observed in OS and EFS between patients with NPM1A - type mut and NPM1non - A-type mut. However, types of NPM1 mutations and the status of FLT3-ITD mutations may jointly have an impact on the prognosis of AML patients.
Collapse
Affiliation(s)
- Yu Shi
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Xiao Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Huimin Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Liying Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yujie Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Hairong Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China.
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China.
| |
Collapse
|
3
|
Lee J, Bao X. Comparative Review on Cancer Pathology from Aberrant Histone Chaperone Activity. Int J Mol Sci 2024; 25:6403. [PMID: 38928110 PMCID: PMC11203986 DOI: 10.3390/ijms25126403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Histone chaperones are integral to chromatin dynamics, facilitating the assembly and disassembly of nucleosomes, thereby playing a crucial role in regulating gene expression and maintaining genomic stability. Moreover, they prevent aberrant histone interactions prior to chromatin assembly. Disruption in histone chaperone function may result in genomic instability, which is implicated in pathogenesis. This review aims to elucidate the role of histone chaperones in cancer pathologies and explore their potential as therapeutic targets. Histone chaperones have been found to be dysregulated in various cancers, with alterations in expression levels, mutations, or aberrant interactions leading to tumorigenesis and cancer progression. In addition, this review intends to highlight the molecular mechanisms of interactions between histone chaperones and oncogenic factors, underscoring their roles in cancer cell survival and proliferation. The dysregulation of histone chaperones is significantly correlated with cancer development, establishing them as active contributors to cancer pathology and viable targets for therapeutic intervention. This review advocates for continued research into histone chaperone-targeted therapies, which hold potential for precision medicine in oncology. Future advancements in understanding chaperone functions and interactions are anticipated to lead to novel cancer treatments, enhancing patient care and outcomes.
Collapse
Affiliation(s)
| | - Xiucong Bao
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
4
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
5
|
Çakırca G, Öztürk MT, Telkoparan-Akillilar P, Güllülü Ö, Çetinkaya A, Tazebay UH. Proteomics analysis identifies the ribosome associated coiled-coil domain-containing protein-124 as a novel interaction partner of nucleophosmin-1. Biol Cell 2024; 116:e202300049. [PMID: 38029384 DOI: 10.1111/boc.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND INFORMATION Coiled-coil domain-containing protein-124 (Ccdc124) is a conserved eukaryotic ribosome-associated RNA-binding protein which is involved in resuming ribosome activity after stress-related translational shutdown. Ccdc124 protein is also detected at cellular localizations devoid of ribosomes, such as the centrosome, or the cytokinetic midbody, but its translation-independent cellular function is currently unknown. RESULTS By using an unbiased LC-MS/MS-based proteomics approach in human embryonic kidney (HEK293) cells, we identified novel Ccdc124 partners and mapped the cellular organization of interacting proteins, a subset of which are known to be involved in nucleoli biogenesis and function. We then identified a novel interaction between the cancer-associated multifunctional nucleolar marker nucleophosmin (Npm1) and Ccdc124, and we characterized this interaction both in HEK293 (human embryonic kidney) and U2OS (osteosarcoma) cells. As expected, in both types of cells, Npm1 and Ccdc124 proteins colocalized within the nucleolus when assayed by immunocytochemical methods, or by monitoring the localization of green fluorescent protein-tagged Ccdc124. CONCLUSIONS The nucleolar localization of Ccdc124 was impaired when Npm1 translocates from the nucleolus to the nucleoplasm in response to treatment with the DNA-intercalator and Topo2 inhibitor chemotherapeutic drug doxorubicin. Npm1 is critically involved in maintaining genomic stability by mediating various DNA-repair pathways, and over-expression of Npm1 or specific NPM1 mutations have been previously associated with proliferative diseases, such as acute myelogenous leukemia, anaplastic large-cell lymphoma, and solid cancers originating from different tissues. SIGNIFICANCE Identification of Ccdc124 as a novel interaction partner of Nmp1 within the frame of molecular mechanisms involving nucleolar stress-sensing and DNA-damage response is expected to provide novel insights into the biology of cancers associated with aberrations in NPM1.
Collapse
Affiliation(s)
- Gamze Çakırca
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoğlu Öztürk
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | | | - Ömer Güllülü
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
| | - Agit Çetinkaya
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | - Uygar Halis Tazebay
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| |
Collapse
|
6
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
7
|
Huang Y, Zhang Z, Sui M, Li Y, Hu Y, Zhang H, Zhang F. A novel stemness classification in acute myeloid leukemia by the stemness index and the identification of cancer stem cell-related biomarkers. Front Immunol 2023; 14:1202825. [PMID: 37409118 PMCID: PMC10318110 DOI: 10.3389/fimmu.2023.1202825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Background Stem cells play an important role in acute myeloid leukemia (AML). However, their precise effect on AML tumorigenesis and progression remains unclear. Methods The present study aimed to characterize stem cell-related gene expression and identify stemness biomarker genes in AML. We calculated the stemness index (mRNAsi) based on transcription data using the one-class logistic regression (OCLR) algorithm for patients in the training set. According to the mRNAsi score, we performed consensus clustering and identified two stemness subgroups. Eight stemness-related genes were identified as stemness biomarkers through gene selection by three machine learning methods. Results We found that patients in stemness subgroup I had a poor prognosis and benefited from nilotinib, MK-2206 and axitinib treatment. In addition, the mutation profiles of these two stemness subgroups were different, which suggested that patients in different subgroups had different biological processes. There was a strong significant negative correlation between mRNAsi and the immune score (r= -0.43, p<0.001). Furthermore, we identified eight stemness-related genes that have potential to be biomarkers, including SLC43A2, CYBB, CFP, GRN, CST3, TIMP1, CFD and IGLL1. These genes, except IGLL1, had a negative correlation with mRNAsi. SLC43A2 is expected to be a potential stemness-related biomarker in AML. Conclusion Overall, we established a novel stemness classification using the mRNAsi score and eight stemness-related genes that may be biomarkers. Clinical decision-making should be guided by this new signature in prospective studies.
Collapse
Affiliation(s)
- Yue Huang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhuo Zhang
- National Health Commission (NHC) Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hematology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Meijuan Sui
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Medical Insurance Office, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Hu
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Haiyu Zhang
- Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Zhang
- National Health Commission (NHC) Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
La Manna S, Florio D, Panzetta V, Roviello V, Netti PA, Di Natale C, Marasco D. Hydrogelation tunability of bioinspired short peptides. SOFT MATTER 2022; 18:8418-8426. [PMID: 36300826 DOI: 10.1039/d2sm01385a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular assemblies of short peptides are experiencing a stimulating flowering. Herein, we report a novel class of bioinspired pentapeptides, not bearing Phe, that form hydrogels with fibrillar structures. The inherent sequence comes from the fragment 269-273 of nucleophosmin 1 protein, that is normally involved in liquid-liquid phase separation processes into the nucleolus. By means of rheology, spectroscopy, and scanning microscopy the crucial roles of the extremities in the modulation of the mechanical properties of hydrogels were elucidated. Three of four peptide showed a typical shear-thinning profile and a self-assembly into hierarchical nanostructures fibers and two of them resulted biocompatible in MCF7 cells. The presence of an amide group at C-terminal extremity caused the fastest aggregation and the major content of structured intermediates during gelling process. The tunable mechanical and structural features of this class of hydrogels render derived supramolecular systems versatile and suitable for future biomedical applications.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Roviello
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
9
|
Florio D, Roviello V, La Manna S, Napolitano F, Maria Malfitano A, Marasco D. Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia. Bioorg Chem 2022; 127:106001. [DOI: 10.1016/j.bioorg.2022.106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
10
|
Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022; 36:2351-2367. [PMID: 36008542 PMCID: PMC9522592 DOI: 10.1038/s41375-022-01666-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.
Collapse
|
11
|
Griffioen MS, de Leeuw DC, Janssen JJWM, Smit L. Targeting Acute Myeloid Leukemia with Venetoclax; Biomarkers for Sensitivity and Rationale for Venetoclax-Based Combination Therapies. Cancers (Basel) 2022; 14:cancers14143456. [PMID: 35884517 PMCID: PMC9318140 DOI: 10.3390/cancers14143456] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Venetoclax has proven to be a promising therapy for newly diagnosed, relapsed and refractory AML patients ineligible for induction chemotherapy. Current ongoing clinical trials are evaluating its effectivity as frontline therapy for all acute myeloid leukemia (AML) patients. However, response rates vary wildly, depending on patient characteristics and mutational profiles. This review elaborates on the efficacy and safety of venetoclax compared to conventional chemotherapy for treatment of AML patients, comparing the response rates, overall survival and adverse events. Moreover, it gives an overview of genetic and epigenetic AML cell characteristics that give enhanced or decreased response to venetoclax and offers insights into the pathogenesis of venetoclax sensitivity and resistance. Additionally, it suggests possible treatment combinations predicted to be successful based on identified mechanisms influencing venetoclax sensitivity of AML cells. Abstract Venetoclax is a BCL-2 inhibitor that effectively improves clinical outcomes in newly diagnosed, relapsed and refractory acute myeloid leukemia (AML) patients, with complete response rates (with and without complete blood count recovery) ranging between 34–90% and 21–33%, respectively. Here, we aim to give an overview of the efficacy of venetoclax-based therapy for AML patients, as compared to standard chemotherapy, and on factors and mechanisms involved in venetoclax sensitivity and resistance in AML (stem) cells, with the aim to obtain a perspective of response biomarkers and combination therapies that could enhance the sensitivity of AML cells to venetoclax. The presence of molecular aberrancies can predict responses to venetoclax, with a higher response in NPM1-, IDH1/2-, TET2- and relapsed or refractory RUNX1-mutated AML. Decreased sensitivity to venetoclax was observed in patients harboring FLT3-ITD, TP53, K/NRAS or PTPN11 mutations. Moreover, resistance to venetoclax was observed in AML with a monocytic phenotype and patients pre-treated with hypomethylating agents. Resistance to venetoclax can arise due to mutations in BCL-2 or pro-apoptotic proteins, an increased dependency on MCL-1, and usage of additional/alternative sources for energy metabolism, such as glycolysis and fatty acid metabolism. Clinical studies are testing combination therapies that may circumvent resistance, including venetoclax combined with FLT3- and MCL-1 inhibitors, to enhance venetoclax-induced cell death. Other treatments that can potentially synergize with venetoclax, including MEK1/2 and mitochondrial complex inhibitors, need to be evaluated in a clinical setting.
Collapse
Affiliation(s)
- Mila S Griffioen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - David C de Leeuw
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Linda Smit
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Effective NPM1 plasmid standards selection for minimal/measurable residual disease monitoring in acute myeloid leukemia. Mol Biol Rep 2022; 49:8169-8172. [PMID: 35716280 DOI: 10.1007/s11033-022-07363-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND NPM1 plasmid standards are required for absolute quantification of minimal residual disease in acute myeloid leukemia patients. The standards are usually obtained, next to commercially constructed gene fragments, from transgenic bacteria colonies. However, this procedure is laborious and very time consuming. METHODS AND RESULTS We have developed a PCR method that speeds up, simplifies, and streamlines the process of preparing NPM1 plasmid standards. The method is based on a combination of three primers, two surrounding the usual NPM1 mutation position and one over the mutation site. With this method, we were able to clearly distinguish plasmids with at least 15 different NPM1 mutations from the wild-type NPM1 plasmid. CONCLUSIONS With the new approach, preparing NPM1 plasmid standards is easier, identifying NPM1-positive colonies is possible in less than a day and moreover, for a lower price than commercially constructed gene fragments.
Collapse
|
13
|
La Manna S, Florio D, Di Natale C, Lagreca E, Sibillano T, Giannini C, Marasco D. Type C mutation of nucleophosmin 1 acute myeloid leukemia: Consequences of intrinsic disorder. Biochim Biophys Acta Gen Subj 2022; 1866:130173. [PMID: 35597503 DOI: 10.1016/j.bbagen.2022.130173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) protein is a multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML). AML mutations cause the unfolding of the C-terminal domain (CTD) and the protein delocalizing in the cytosol (NPM1c+). Marked aggregation endowed with an amyloid character was assessed as consequences of mutations. SCOPE Herein we analyzed the effects of type C mutation on two protein regions: i) a N-terminal extended version of the CTD, named Cterm_mutC and ii) a shorter polypeptide including the sequences of the second and third helices of the CTD, named H2_mutC. MAJOR CONCLUSIONS Both demonstrated able to self-assembly with different kinetics and conformational intermediates and to provide fibers presenting large flexible regions. GENERAL SIGNIFICANCE The present study adds a new piece of knowledge to the effects of AML-mutations on structural biology of Nucleophosmin 1, that could be exploited in therapeutic interventions targeting selectively NPMc+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Elena Lagreca
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
14
|
3-Ketodihydrosphingosine reductase maintains ER homeostasis and unfolded protein response in leukemia. Leukemia 2022; 36:100-110. [PMID: 34373586 PMCID: PMC8732298 DOI: 10.1038/s41375-021-01378-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their metabolic pathways have been implicated in disease development and therapeutic response; however, the detailed mechanisms remain unclear. Using a sphingolipid network focused CRISPR/Cas9 library screen, we identified an endoplasmic reticulum (ER) enzyme, 3-Ketodihydrosphingosine reductase (KDSR), to be essential for leukemia cell maintenance. Loss of KDSR led to apoptosis, cell cycle arrest, and aberrant ER structure. Transcriptomic analysis revealed the indispensable role of KDSR in maintaining the unfolded protein response (UPR) in ER. High-density CRISPR tiling scan and sphingolipid mass spectrometry pinpointed the critical role of KDSR's catalytic function in leukemia. Mechanistically, depletion of KDSR resulted in accumulated 3-ketodihydrosphingosine (KDS) and dysregulated UPR checkpoint proteins PERK, ATF6, and ATF4. Finally, our study revealed the synergism between KDSR suppression and pharmacologically induced ER-stress, underscoring a therapeutic potential of combinatorial targeting sphingolipid metabolism and ER homeostasis in leukemia treatment.
Collapse
|
15
|
La Manna S, Florio D, Di Natale C, Scognamiglio PL, Sibillano T, Netti PA, Giannini C, Marasco D. Type F mutation of nucleophosmin 1 Acute Myeloid Leukemia: A tale of disorder and aggregation. Int J Biol Macromol 2021; 188:207-214. [PMID: 34364939 DOI: 10.1016/j.ijbiomac.2021.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Protein aggregation is suggested as a reversible, wide-spread physiological process used by cells to regulate their growth and adapt to different stress conditions. Nucleophosmin 1(NPM1) protein is an abundant multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML) patients. So far, the role of NPM1 mutations in leukemogenesis has remained largely elusive considering that they have the double effect of unfolding the C-terminal domain (CTD) and delocalizing the protein in the cytosol (NPM1c+). This mislocalization heavily impacts on cell cycle regulation. Our recent investigations unequivocally demonstrated an amyloid aggregation propensity introduced by AML mutations. Herein, employing complementary biophysical assays, we have characterized a N-terminal extended version of type F AML mutation of CTD and proved that it is able to form assemblies with amyloid character and fibrillar morphology. The present study represents an additional phase of knowledge to deepen the roles exerted by different types of cytoplasmatic NPM1c+ forms to develop in the future potential therapeutics for their selective targeting.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
16
|
NPM1 Mutational Status Underlines Different Biological Features in Pediatric AML. Cancers (Basel) 2021; 13:cancers13143457. [PMID: 34298672 PMCID: PMC8304368 DOI: 10.3390/cancers13143457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling protein, predominantly located in the nucleolus, that regulates a multiplicity of different biological processes. NPM1 localization in the cell is finely tuned by specific signal motifs, with two tryptophan residues (Trp) being essential for the nucleolar localization. In acute myeloid leukemia (AML), several NPM1 mutations have been reported, all resulting in cytoplasmic delocalization, but the putative biological and clinical significance of different variants are still debated. We explored HOXA and HOXB gene expression profile in AML patients and found a differential expression between NPM1 mutations inducing the loss of two (A-like) Trp residues and those determining the loss of one Trp residue (non-A-like). We thus expressed NPM1 A-like- or non-A-like-mutated vectors in AML cell lines finding that NPM1 partially remained in the nucleolus in the non-A-like NPM1-mutated cells. As a result, only in A-like-mutated cells we detected HOXA5, HOXA10, and HOXB5 hyper-expression and p14ARF/p21/p53 pathway deregulation, leading to reduced sensitivity to the treatment with either chemotherapy or Venetoclax, as compared to non-A-like cells. Overall, we identified that the NPM1 mutational status mediates crucial biological characteristics of AML cells, providing the basis for further sub-classification and, potentially, management of this subgroup of patients.
Collapse
|
17
|
Holoubek A, Strachotová D, Otevřelová P, Röselová P, Heřman P, Brodská B. AML-Related NPM Mutations Drive p53 Delocalization into the Cytoplasm with Possible Impact on p53-Dependent Stress Response. Cancers (Basel) 2021; 13:cancers13133266. [PMID: 34209894 PMCID: PMC8269334 DOI: 10.3390/cancers13133266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Nucleophosmin (NPM) is one of the most abundant nucleolar proteins and its mutations frequently occur in acute myeloid leukemia (AML). The mutations cause aberrant cytoplasmic localization of mutated protein (NPMmut) and often mediate dislocation of NPM interaction partners. Tumor suppressor p53 is known to interact with NPM in response to genotoxic stress and its cytoplasmic localization is an unfavorable prognostic factor in cancers. This study aims to characterize the NPM-p53 interaction and to elucidate the effect of the NPM mutations on p53 localization and expression in live cells. In addition, the cellular dynamics of NPMmut and p53 after treatment with nuclear export inhibitor Selinexor is described and the mechanism of the Selinexor action proposed. Our results contribute to a better understanding of the oncogenic potential of NPM mutations. Abstract Nucleophosmin (NPM) interaction with tumor suppressor p53 is a part of a complex interaction network and considerably affects cellular stress response. The impact of NPM1 mutations on its interaction with p53 has not been investigated yet, although consequences of NPMmut-induced p53 export to the cytoplasm are important for understanding the oncogenic potential of these mutations. We investigated p53-NPM interaction in live HEK-293T cells by FLIM-FRET and in cell lysates by immunoprecipitation. eGFP lifetime-photoconversion was used to follow redistribution dynamics of NPMmut and p53 in Selinexor-treated cells. We confirmed the p53-NPMwt interaction in intact cells and newly documented that this interaction is not compromised by the NPM mutation causing displacement of p53 to the cytoplasm. Moreover, the interaction was not abolished for non-oligomerizing NPM variants with truncated oligomerization domain, suggesting that oligomerization is not essential for interaction of NPM forms with p53. Inhibition of the nuclear exporter XPO1 by Selinexor caused expected nuclear relocalization of both NPMmut and p53. However, significantly different return rates of these proteins indicate nontrivial mechanism of p53 and NPMmut cellular trafficking. The altered p53 regulation in cells expressing NPMmut offers improved understanding to help investigational strategies targeting these mutations.
Collapse
Affiliation(s)
- Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Dita Strachotová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic;
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
| | - Petr Heřman
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic;
- Correspondence: (P.H.); (B.B.); Tel.: +420-951-551-461 (P.H.); +420-221-977-354 (B.B.)
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (A.H.); (P.O.); (P.R.)
- Correspondence: (P.H.); (B.B.); Tel.: +420-951-551-461 (P.H.); +420-221-977-354 (B.B.)
| |
Collapse
|
18
|
NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 2021; 136:1707-1721. [PMID: 32609823 DOI: 10.1182/blood.2019004226] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional protein with prominent nucleolar localization that shuttles between nucleus and cytoplasm. NPM1 mutations represent the most common genetic lesion in adult acute myeloid leukemia (AML; about one third of cases), and they act deterministically to cause the aberrant cytoplasmic delocalization of NPM1 mutants. Because of its unique features, NPM1-mutated AML is recognized as a distinct entity in the 2017 World Health Organization (WHO) classification of hematopoietic neoplasms. Here, we focus on recently identified functions of wild-type NPM1 in the nucleolus and address new biological and clinical issues related to NPM1-mutated AML. The relevance of the cooperation between NPM1 and other mutations in driving AML with different outcomes is presented. We also discuss the importance of eradicating NPM1-mutated clones to achieve AML cure and the impact of preleukemic clonal hematopoiesis persistence in predisposing to second AML. The contribution of HOX genes' expression to the development of NPM1-mutated AML is also highlighted. Clinically, yet unsolved diagnostic issues in the 2017 WHO classification of myeloid neoplasms and the importance of NPM1 mutations in defining the framework of European LeukemiaNet genetic-based risk stratification are discussed. Finally, we address the value and limits of NPM1-based measurable residual disease assessment for treatment guidance and present the results of promising preclinical studies with XPO1 and menin-MLL inhibitors.
Collapse
|
19
|
Molecular Mechanisms Regulating the DNA Repair Protein APE1: A Focus on Its Flexible N-Terminal Tail Domain. Int J Mol Sci 2021; 22:ijms22126308. [PMID: 34208390 PMCID: PMC8231204 DOI: 10.3390/ijms22126308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
APE1 (DNA (apurinic/apyrimidinic site) endonuclease 1) is a key enzyme of one of the major DNA repair routes, the BER (base excision repair) pathway. APE1 fulfils additional functions, acting as a redox regulator of transcription factors and taking part in RNA metabolism. The mechanisms regulating APE1 are still being deciphered. Structurally, human APE1 consists of a well-characterized globular catalytic domain responsible for its endonuclease activity, preceded by a conformationally flexible N-terminal extension, acquired along evolution. This N-terminal tail appears to play a prominent role in the modulation of APE1 and probably in BER coordination. Thus, it is primarily involved in mediating APE1 localization, post-translational modifications, and protein–protein interactions, with all three factors jointly contributing to regulate the enzyme. In this review, recent insights on the regulatory role of the N-terminal region in several aspects of APE1 function are covered. In particular, interaction of this region with nucleophosmin (NPM1) might modulate certain APE1 activities, representing a paradigmatic example of the interconnection between various regulatory factors.
Collapse
|
20
|
Šašinková M, Heřman P, Holoubek A, Strachotová D, Otevřelová P, Grebeňová D, Kuželová K, Brodská B. NSC348884 cytotoxicity is not mediated by inhibition of nucleophosmin oligomerization. Sci Rep 2021; 11:1084. [PMID: 33441774 PMCID: PMC7806638 DOI: 10.1038/s41598-020-80224-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.
Collapse
Affiliation(s)
- Markéta Šašinková
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Petr Heřman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic.
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Dita Strachotová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2, Czech Republic
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.
| |
Collapse
|
21
|
Carbonell D, Suárez-González J, Chicano M, Andrés-Zayas C, Díez-Díez M, Rodríguez-Macías G, Muñiz P, Kwon M, Anguita J, Díez-Martín JL, Buño I, Martínez-Laperche C. Genetic biomarkers identify a subgroup of high-risk patients within low-risk NPM1-mutated acute myeloid leukemia. Leuk Lymphoma 2020; 62:1178-1186. [PMID: 33372822 DOI: 10.1080/10428194.2020.1863400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Although acute myeloid leukemia (AML) with NPM1mut/FLT3-ITDneg is a low-risk entity, its relapse rate remains high. Out of 333 AML patients, 27 were NPM1mut, and were analyzed in greater detail in order to find associations between clinical and molecular features and cumulative incidence of relapse. Next-generation sequencing (NGS) was performed on diagnosis and remission samples using two capture-based panels. The presence of the FLT3D835 variant at diagnosis and a qPCR value of NPM1mut ≥0.1% after induction chemotherapy were associated with an increased probability of relapse, especially if both conditions are present together. By contrast, patients in which the main clone found at diagnosis harbored NPM1 variant had a lower risk of relapse. Nineteen of the 85 variants found at diagnosis were detected by NGS in remission. AML Subgroup with NPM1mut/FLT3-ITDneg is a heterogeneous entity, which can be further risk-stratified based on molecular biomarkers.
Collapse
Affiliation(s)
- Diego Carbonell
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Julia Suárez-González
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, Madrid, Spain
| | - María Chicano
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Cristina Andrés-Zayas
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, Madrid, Spain
| | - Miriam Díez-Díez
- Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, Madrid, Spain
| | | | - Paula Muñiz
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Javier Anguita
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - José Luis Díez-Martín
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, Madrid, Spain.,Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| |
Collapse
|
22
|
Tang Y, Tao Y, Wang L, Yang L, Jing Y, Jiang X, Lei L, Yang Z, Wang X, Peng M, Xiao Q, Ren J, Zhang L. NPM1 mutant maintains ULK1 protein stability via TRAF6‐dependent ubiquitination to promote autophagic cell survival in leukemia. FASEB J 2020; 35:e21192. [DOI: 10.1096/fj.201903183rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 09/06/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yuting Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Yao Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Lu Wang
- Department of Clinical Laboratory University‐Town HospitalChongqing Medical University Chongqing China
| | - Liyuan Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Zailin Yang
- Department of Clinical Laboratory The Third Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xin Wang
- Department of Hematology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| |
Collapse
|
23
|
NPM1 Mutated, BCR-ABL1 Positive Myeloid Neoplasms: Review of the Literature. Mediterr J Hematol Infect Dis 2020; 12:e2020083. [PMID: 33194157 PMCID: PMC7643801 DOI: 10.4084/mjhid.2020.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Breakpoint cluster region - Abelson (BCR-ABL1) chimeric protein and mutated Nucleophosmin (NPM1) are often present in hematological cancers, but they rarely coexist in the same disease. Both anomalies are considered founder mutations that inhibit differentiation and apoptosis, but BCR-ABL1 could act as a secondary mutation conferring a proliferative advantage to a pre-neoplastic clone. The 2016 World Health Organization (WHO) classification lists the provisional acute myeloid leukemia (AML) with BCR-ABL1, which must be diagnosed differentially from the rare blast phase (BP) onset of chronic myeloid leukemia (CML), mainly because of the different therapeutic approach in the use of tyrosine kinase inhibitors (TKI). Here we review the BCR/ABL1 plus NPMc+ published cases since 1975 and describe a case from our institution in order to discuss the clinical and molecular features of this rare combination, and report the latest acquisition about an occurrence that could pertain either to the rare AML BCR-ABL1 positive or the even rarer CML-BP with mutated NPM1 at the onset. Differential diagnosis is based on careful analysis of genotypic and phenotypic features and anamnestic, clinical evolution, and background data. Therapeutic decisions must consider the broader clinical aspects, the comparatively mild effects of TKI therapy versus the great benefit that might bring to most of the patients, as may be incidentally demonstrated by our case history.
Collapse
|
24
|
Di Natale C, Florio D, Di Somma S, Di Matteo A, Federici L, Netti PA, Morelli G, Malfitano AM, Marasco D. Proteostasis unbalance of nucleophosmin 1 in Acute Myeloid Leukemia: An aggregomic perspective. Int J Biol Macromol 2020; 164:3501-3507. [PMID: 32890557 DOI: 10.1016/j.ijbiomac.2020.08.248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/22/2023]
Abstract
The role exerted by the nucleus in the regulation of proteostasis in both health and disease is recognized of outmost importance, even though not fully understood. Many recent investigations are focused on its ability to modulate and coordinate protein quality control machineries in mammalian cells. Nucleophosmin 1 (NPM1) is one of the most abundant nucleolar proteins and its gene is mutated in ~30% of Acute Myeloid Leukemia (AML) patients. Mutations are localized in the C-terminal domain of the protein and cause cytoplasmatically delocalized and possibly aggregated forms of NPM1 (NPM1c+). Therapeutic interventions targeted on NPM1c+ are in demand and, to this end, deeper knowledge of NPM1c+ behavior in the blasts' cytosol is required. Here by means of complementary biophysical techniques we compared the conformational and aggregative behavior of the entire C-terminal domains of NPM1wt and type A NPM1c+ (bearing the most common mutation). Overall data show that only Cterm_mutA is able to form amyloid-like assemblies with fibrillar morphology and that the oligomers are toxic in human neuroblastoma SHSY cells. This study adds a novel piece of knowledge to the comprehension of the molecular roles exerted by cytoplasmatic NPM1c+ and suggests the exploitation of the amyloidogenic propensity of NPM1c+ as a new strategy for targeting AML with NPM1 mutations.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Federici
- Center of Advanced Studies and Technology (CAST) and Department of Clinical, Oral and Biotechnological Sciences, University of Chieti "G. d'Annunzio", 66100 Chieti, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy; Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy.
| |
Collapse
|
25
|
El-Gamal RAER, Hashem AES, Habashy DM, Abou Elwafa MAZ, Boshnak NH. Flow cytometry in detection of Nucleophosmin 1 mutation in acute myeloid leukemia patients: A reproducible tertiary hospital experience. Int J Lab Hematol 2020; 43:68-75. [PMID: 32856429 DOI: 10.1111/ijlh.13317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 12/08/2022]
Abstract
INTRODUCTION Nucleophosmin 1 (NPM1) mutation is one of the most frequent gene mutations in adult acute myeloid leukemia (AML), being detected in 35% of all cases and in up to 60% of patients with normal karyotype AML. AML with mutated NPM1 has distinct pathology, immunophenotyping, and confirmed favorable prognostic significance. Hence, AML with mutated NPM1 is a separate entity in the revised 2016 World Health Organization classification. This study aimed to evaluate the use of a reproducible flow cytometry approach in the assay of mutant NPM1 protein in AML patients and to correlate flow cytometric results with the NPM1 gene mutation. METHODS Eighty-nine newly diagnosed AML patients were evaluated for the expression of mutant NPM1 using flow cytometry and for the presence of NPM1 exon 12 mutations using high-resolution melting polymerase chain reaction (HRM PCR). RESULTS The NPM1 mutation was found in 35 (39.3%) patients by HRM PCR. These patients showed a significantly higher level of percentage of positive-stained cells (% positive cells) and normalized median fluorescence intensity (MFI) for mutant NPM1 by flow cytometry than the negative mutation group. CONCLUSION Flow cytometric detection of mutant NPM1 offers a possible tool to indicate NPM1 mutational status.
Collapse
Affiliation(s)
| | - Azza El-Sayed Hashem
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| | - Deena Mohamed Habashy
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| | | | - Noha Hussein Boshnak
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
27
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
28
|
Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes (Basel) 2020; 11:genes11060649. [PMID: 32545659 PMCID: PMC7348733 DOI: 10.3390/genes11060649] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein involved in ribosome biogenesis, the maintenance of genomic integrity and the regulation of the ARF-p53 tumor-suppressor pathway among multiple other functions. Mutations in the corresponding gene cause a cytoplasmic dislocation of the NPM1 protein. These mutations are unique to acute myeloid leukemia (AML), a disease characterized by clonal expansion, impaired differentiation and the proliferation of myeloid cells in the bone marrow. Despite our improved understanding of NPM1 mutations and their consequences, the underlying leukemia pathogenesis is still unclear. Recent studies that focused on dysregulated gene expression in AML with mutated NPM1 have shed more light into these mechanisms. In this article, we review the current evidence on normal functions of NPM1 and aberrant functioning in AML, and highlight investigational strategies targeting these mutations.
Collapse
|
29
|
Ohanian M, Telouk P, Kornblau S, Albarede F, Ruvolo P, Tidwell RSS, Plesa A, Kanagal-Shamanna R, Matera EL, Cortes J, Carson A, Dumontet C. A heavy metal baseline score predicts outcome in acute myeloid leukemia. Am J Hematol 2020; 95:422-434. [PMID: 31944361 DOI: 10.1002/ajh.25731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Despite abundant epidemiological data linking metals to leukemia and other cancers, baseline values of toxic and essential metals in patients with leukemia and the clinical impact of these metals remain unknown. Thus, we sought to quantify metal values in untreated patients with acute myeloid leukemia (AML) and controls and determine the impact of metal values on AML patients' survival. Serum samples from patients with untreated AML and controls at Hospices Civils de Lyon were analyzed and compared for trace metals and copper isotopic abundance ratios with inductively coupled plasma mass spectrometry. Survival analysis was performed as a function of metal values, and a multi-metal score was developed for patients with AML. Serum samples were collected from 67 patients with untreated AML and 94 controls. Most patients had intermediate-risk cytogenetics (63.1%) without FLT3 internal tandem duplication mutations (75.6%) or NPM1 mutations (68.1%). Most metal values differed significantly between AML and control groups. Patients with lower magnesium and higher cadmium values had the worst survival rates, with only 36% surviving at 6 months (P = .001). The adverse prognostic effect of this combination was maintained on multivariate analysis. Based on this, we developed a novel metal score, which accounts for multiple relative abnormalities in the values of five toxic and five essential metals. Patients with a higher metal score had significantly worse survival, which was maintained on multivariate analysis (P = .03). This baseline metal scoring system was also prognostic when we applied it to a separate population of front-line AML patients.
Collapse
Affiliation(s)
- Maro Ohanian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philippe Telouk
- Department of Géosciences, École Normal Supérieure de Lyon, Lyon, France
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francis Albarede
- Department of Géosciences, École Normal Supérieure de Lyon, Lyon, France
| | - Peter Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca S S Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Plesa
- CRCL, INSERM 1052/CNRS 5286, Hospices Civils de Lyon, Lyon, France
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eva-Laure Matera
- CRCL, INSERM 1052/CNRS 5286, Hospices Civils de Lyon, Lyon, France
| | | | - Arch Carson
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas School of Public Health, Houston, Texas
| | - Charles Dumontet
- CRCL, INSERM 1052/CNRS 5286, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
30
|
López DJ, de Blas A, Hurtado M, García-Alija M, Mentxaka J, de la Arada I, Urbaneja MA, Alonso-Mariño M, Bañuelos S. Nucleophosmin interaction with APE1: Insights into DNA repair regulation. DNA Repair (Amst) 2020; 88:102809. [PMID: 32092641 DOI: 10.1016/j.dnarep.2020.102809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1), an abundant, nucleolar protein with multiple functions affecting cell homeostasis, has also been recently involved in DNA damage repair. The roles of NPM1 in different repair pathways remain however to be elucidated. NPM1 has been described to interact with APE1 (apurinic apyrimidinic endonuclease 1), a key enzyme of the base excision repair (BER) pathway, which could reflect a direct participation of NPM1 in this route. To gain insight into the possible role(s) of NPM1 in BER, we have explored the interplay between the subnuclear localization of both APE1 and NPM1, the in vitro interaction they establish, the effect of binding to abasic DNA on APE1 conformation, and the modulation by NPM1 of APE1 binding and catalysis on DNA. We have found that, upon oxidative damage, NPM1 is released from nucleoli and locates on patches throughout the chromatin, perhaps co-localizing with APE1, and that this traffic could be mediated by phosphorylation of NPM1 on T199. NPM1 and APE1 form a complex in vitro, involving, apart from the core domain, at least part of the linker region of NPM1, whereas the C-terminal domain is dispensable for binding, which explains that an AML leukemia-related NPM1 mutant with an unfolded C-terminal domain can bind APE1. APE1 interaction with abasic DNA stabilizes APE1 structure, as based on thermal unfolding. Moreover, our data suggest that NPM1, maybe by keeping APE1 in an "open" conformation, favours specific recognition of abasic sites on DNA, competing with off-target associations. Therefore, NPM1 might participate in BER favouring APE1 target selection as well as turnover from incised abasic DNA.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ander de Blas
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel Hurtado
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel García-Alija
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Mentxaka
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor de la Arada
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María A Urbaneja
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marián Alonso-Mariño
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
31
|
Kaowinn S, Seo EJ, Heo W, Bae JH, Park EJ, Lee S, Kim YJ, Koh SS, Jang IH, Shin DH, Chung YH. Cancer upregulated gene 2 (CUG2), a novel oncogene, promotes stemness-like properties via the NPM1-TGF-β signaling axis. Biochem Biophys Res Commun 2019; 514:1278-1284. [DOI: 10.1016/j.bbrc.2019.05.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/12/2019] [Indexed: 01/18/2023]
|
32
|
Keil M, Meyer MT, Dannheisig DP, Maerz LD, Philipp M, Pfister AS. Loss of Peter Pan protein is associated with cell cycle defects and apoptotic events. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:882-895. [DOI: 10.1016/j.bbamcr.2019.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/21/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
|
33
|
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol 2019; 111:52-62. [PMID: 31009764 DOI: 10.1016/j.biocel.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Markéta Šašinková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| |
Collapse
|
34
|
La Manna S, Scognamiglio PL, Roviello V, Borbone F, Florio D, Di Natale C, Bigi A, Cecchi C, Cascella R, Giannini C, Sibillano T, Novellino E, Marasco D. The acute myeloid leukemia-associated Nucleophosmin 1 gene mutations dictate amyloidogenicity of the C-terminal domain. FEBS J 2019; 286:2311-2328. [PMID: 30921500 DOI: 10.1111/febs.14815] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasm shuttling protein ubiquitously expressed and highly conserved. It is involved in many cellular processes and its gene is mutated in ~ 50-60% of Acute Myeloid Leukemia (AML) patients. These mutations cause its cytoplasmic mislocation and accumulation (referred to as NPM1c+) and open the door to rational targeted therapy for AML diseases with mutated NPM1. Currently, there is limited knowledge on the mechanism of action of NPM1c+ and on structural determinants of the leukemogenic potential of AML mutations. Numerous previous studies outlined an unexpected amyloid-like aggregation tendency of several regions located in the C-terminal domain that, in wild-type form, fold as a three-helical-bundle. Here, using a combination of different techniques including Thioflavin T fluorescence, congo red absorbance, CD spectroscopy, Scanning Electron Microscopy (SEM) and wide-angle X-ray scattering on a series of peptides bearing mutations, we evidence that the amyloidogenicity of NPM1 mutants is directly linked to AML. Noticeably, AML point mutations strongly affect the amyloid cytotoxic effects in neuroblastoma cells and the morphologies of deriving fibrils. This study paves the way to deepen our understanding of AML-associated NPM1 mutants, and could help to break new ground for the identification of novel drugs targeting NPM1c+ for treatment of AML.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Valentina Roviello
- Analytical Chemistry for the Environment and CeSMA (Advanced Metrologic Service Center), University of Naples "Federico II", Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples "Federico II", Italy
| | - Daniele Florio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Concetta Di Natale
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, Bari, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, Bari, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| |
Collapse
|
35
|
Di Natale C, La Manna S, Malfitano AM, Di Somma S, Florio D, Scognamiglio PL, Novellino E, Netti PA, Marasco D. Structural insights into amyloid structures of the C-terminal region of nucleophosmin 1 in type A mutation of acute myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:637-644. [PMID: 30710643 DOI: 10.1016/j.bbapap.2019.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is a clinically and a molecularly heterogeneous disease characterized by the accumulation of undifferentiated and uncontrolled proliferation of hematopoietic progenitor cells. The sub-group named "AML with gene mutations" includes mutations in nucleophosmin (NPM1) assumed as a distinct leukemic entity. NPM1 is an abundant multifunctional protein belonging to the nucleoplasmin family of nuclear chaperones. AML mutated protein is translocated into the cytoplasm (NPM1c+) retaining all functional domains except the loss of a unique NoLs (nucleolar localization signal) at the C-term domain (CTD) and the subsequent disruption of a three helix bundle as tertiary structure. The oligomeric state of NPM1 is of outmost importance for its biological roles and our previous studies linked an aggregation propensity of distinct regions of CTD to leukomogenic potentials of AML mutations. Here we investigated a polypeptide spanning the third and second helices of the bundle of type A mutated CTD. By a combination of several techniques, we ascertained the amyloid character of the aggregates and of fibrils resulting from a self-recognition mechanism. Further amyloid assemblies resulted cytoxic in MTT assay strengthening a new idea of a therapeutic strategy in AML consisting in the self-degradation of mutated NPM1.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Italy
| | | | - Sarah Di Somma
- Department of Translational Medicine, University of Naples "Federico II", Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | | | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy.
| |
Collapse
|
36
|
Heiblig M, Sujobert P, Hayette S, Balsat M, Elhamri M, Salles G, Thomas X. Impact of NPM1 mutation subtypes on treatment outcome in AML: The Lyon-University Hospital experience. Leuk Res 2018; 76:29-32. [PMID: 30529680 DOI: 10.1016/j.leukres.2018.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Maël Heiblig
- Hospices Civils de Lyon, Department of Hematology, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Laboratory of Molecular Biology, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Sandrine Hayette
- Hospices Civils de Lyon, Laboratory of Molecular Biology, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Marie Balsat
- Hospices Civils de Lyon, Department of Hematology, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Mohamed Elhamri
- Hospices Civils de Lyon, Department of Hematology, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Gilles Salles
- Hospices Civils de Lyon, Department of Hematology, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Xavier Thomas
- Hospices Civils de Lyon, Department of Hematology, Lyon-Sud Hospital, Pierre-Bénite, France.
| |
Collapse
|
37
|
Handschuh L, Wojciechowski P, Kazmierczak M, Marcinkowska-Swojak M, Luczak M, Lewandowski K, Komarnicki M, Blazewicz J, Figlerowicz M, Kozlowski P. NPM1 alternative transcripts are upregulated in acute myeloid and lymphoblastic leukemia and their expression level affects patient outcome. J Transl Med 2018; 16:232. [PMID: 30126426 PMCID: PMC6102803 DOI: 10.1186/s12967-018-1608-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 11/29/2022] Open
Abstract
Background Expression of the NPM1 gene, encoding nucleophosmin, is upregulated in cancers. Although more than ten NPM1 transcripts are known, the reports were usually limited to one predominant transcript. In leukemia, the NPM1 expression has not been widely studied so far. In acute myeloid leukemia (AML), the mutational status of the gene seems to play a pivotal role in carcinogenesis. Therefore, the aim of the study was to quantify alternative NPM1 transcripts in two types of acute leukemia, AML and ALL (acute lymphoblastic leukemia). Methods Using droplet digital PCR, we analyzed the levels of three protein-coding NPM1 transcripts in 66 samples collected from AML and ALL patients and 16 control samples. Using RNA-seq, we detected 8 additional NPM1 transcripts, including non-coding splice variants with retained introns. For data analysis, Welch two sample t-test, Pearson’s correlation and Kaplan–Meier analysis were applied. Results The levels of the particular NPM1 transcripts were significantly different but highly correlated with each other in both leukemia and control samples. Transcript NPM1.1, encoding the longest protein (294 aa), had the highest level of accumulation and was one of the most abundant transcripts in the cell. Comparing to NPM1.1, the levels of the NPM1.2 and NPM1.3 transcripts, encoding a 265-aa and 259-aa proteins, were 30 and 3 times lower, respectively. All three NPM1 transcripts were proportionally upregulated in both types of leukemia compared to control samples. In AML, the levels of NPM1 transcripts decreased in complete remission and increased again with relapse of the disease. Low levels of NPM1.1 and NPM1.3 were associated with better prognosis. The contribution of non-coding transcripts to the total level of NPM1 gene seemed to be marginal, except for one short 5-end transcript accumulated at high levels in AML and control cells. Aberrant proportions of particular NPM1 splice variants could be linked to abnormal expression of genes encoding alternative splicing factors. Conclusions The levels of the studied NPM1 transcripts were different but highly correlated with each other. Their upregulation in AML and ALL, decrease after therapy and association with patient outcome suggests the involvement of elevated NPM1 expression in the acute leukemia pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12967-018-1608-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luiza Handschuh
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland. .,Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznan, Poland.
| | - Pawel Wojciechowski
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznan, Poland
| | - Malgorzata Marcinkowska-Swojak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Magdalena Luczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Technology and Chemical Engineering, Poznan University of Technology, Poznan, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznan, Poland
| | - Mieczyslaw Komarnicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569, Poznan, Poland
| | - Jacek Blazewicz
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Marek Figlerowicz
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Piotr Kozlowski
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Technology and Chemical Engineering, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
38
|
Holoubek A, Herman P, Sýkora J, Brodská B, Humpolíčková J, Kráčmarová M, Gášková D, Hof M, Kuželová K. Monitoring of nucleophosmin oligomerization in live cells. Methods Appl Fluoresc 2018; 6:035016. [PMID: 29901450 DOI: 10.1088/2050-6120/aaccb9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oligomerization plays a crucial role in the function of nucleophosmin (NPM), an abundant nucleolar phosphoprotein. Two dual-color methods based on modern fluorescence confocal microscopy are applied for tracking NPM aggregates in live cells: cross-correlation Number and Brightness analysis (ccN&B) combined with pulsed interleaved excitation (PIE) and fluorescence-lifetime imaging microscopy (FLIM) utilizing resonance energy transfer (FRET). HEK-293T cells were transfected with mixture of plasmids designed for tagging with fluorescent proteins so that the cells express mixed population of NPM labeled either with eGFP or mRFP1. We observe joint oligomers formed from the fluorescently labeled NPM. Having validated the in vivo methods, we study an effect of substitutions in cysteine 21 (Cys21) of the NPM N-terminus on the oligomerization to demonstrate applicability of the methods. Inhibitory effect of mutations of the Cys21 to nonpolar Ala or to aromatic Phe on the oligomerization was reported in literature using in vitro semi-native electrophoresis. However, we do not detect any break-up of the joint NPM oligomers due to the Cys21 mutations in live cells. In vivo microscopy observations are supported by an in vitro method, the GFP-Trap immunoprecipitation assay. Our results therefore show importance of utilizing several methods for detection of biologically relevant protein aggregates. In vivo monitoring of the NPM oligomerization, a potential cancer therapy target, by the presented methods offers a new way to monitor effects of drugs that are tested as NPM oligomerization inhibitors directly in live cells.
Collapse
Affiliation(s)
- Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 20 Praha 2, Czechia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
40
|
Núñez Villacís L, Wong MS, Ferguson LL, Hein N, George AJ, Hannan KM. New Roles for the Nucleolus in Health and Disease. Bioessays 2018; 40:e1700233. [PMID: 29603296 DOI: 10.1002/bies.201700233] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Over the last decade, our appreciation of the importance of the nucleolus for cellular function has progressed from the ordinary to the extraordinary. We no longer think of the nucleolus as simply the site of ribosome production, or a dynamic subnuclear body noted by pathologists for its changes in size and shape with malignancy. Instead, the nucleolus has emerged as a key controller of many cellular processes that are fundamental to normal cell homeostasis and the target for dysregulation in many human diseases; in some cases, independent of its functions in ribosome biogenesis. These extra-nucleolar or new functions, which we term "non-canonical" to distinguish them from the more traditional role of the nucleolus in ribosome synthesis, are the focus of this review. In particular, we explore how these non-canonical functions may provide novel insights into human disease and in some cases new targets for therapeutic development.
Collapse
Affiliation(s)
- Lorena Núñez Villacís
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Mei S Wong
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Center, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Laura L Ferguson
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia
| | - Amee J George
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, 4067, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, 3010, Australia
| | - Katherine M Hannan
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, The Australian National University, Acton, 2601, Australia.,Department of Biochemistry, The University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
41
|
Kaowinn S, Kim J, Lee J, Shin DH, Kang CD, Kim DK, Lee S, Kang MK, Koh SS, Kim SJ, Chung YH. Cancer upregulated gene 2 induces epithelial-mesenchymal transition of human lung cancer cells via TGF-β signaling. Oncotarget 2018; 8:5092-5110. [PMID: 27974707 PMCID: PMC5354895 DOI: 10.18632/oncotarget.13867] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/22/2016] [Indexed: 01/13/2023] Open
Abstract
Cancer upregulated gene 2 (CUG2) enhances cell migration and invasion, but the underlying mechanism has not been revealed. Herein, CUG2 decreased the expression of E-cadherin and increased the expression of N-cadherin and vimentin, characteristics of the epithelial-mesenchymal transition (EMT). A CUG2 deletion mutant, lacking interaction with nucleophosmin 1 (NPM1), or suppression of NPM1 reduced wound healing and cell invasion, indicating that CUG2-mediated EMT requires NPM1. CUG2 enhanced activation of Smad2/3 and expression of Snail and Twist, while the CUG2 silence decreased these TGF-β signaling pathways, leading to suppression of EMT. NPM silence also inhibited the CUG2-induced TGF-β signaling. These results suggest that TGF-β signaling is involved in CUG2-induced EMT. Treatment with EW-7197, a novel inhibitor of TGF-β signaling, diminished CUG2-mediated EMT and inhibition of Akt, ERK, JNK, and p38 MAPK, non-canonical TGF-β signaling molecules, also decreased expression of Smad2/3, Snail and Twist, leading to inhibition of EMT. The results confirm that TGF-β signaling is essential for CUG2-mediated EMT. Interestingly, TGF-β enhanced CUG2 expression. We further found that both CUG2-induced TGF-β production and TGF-β-induced CUG2 up-regulation required a physical interaction between Sp1 and Smad2/3 in the CUG2 and TGF-β promoter, as demonstrated by a promoter reporter assay, immunoprecipitation, and ChIP assay. These results indicated close crosstalk between CUG2 and TGF-β. Conversely, suppression of CUG2 or NPM1 did not completely inhibit TGF-β-induced EMT, indicating that the effect of TGF-β on EMT is dominant over the effect of CUG2 on EMT. Collectively, our findings suggest that CUG2 induces the EMT via TGF-β signaling.
Collapse
Affiliation(s)
- Sirichat Kaowinn
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Jeonghyo Kim
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Jaebeom Lee
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Dong Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Chi-Dug Kang
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dae-Kee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, EwhaWomans University, Seoul 120-750, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Min Kyung Kang
- Department of Biological Sciences, Dong-A University, Busan 604-714, Republic of Korea
| | - Sang Seok Koh
- Department of Biological Sciences, Dong-A University, Busan 604-714, Republic of Korea
| | - Seong-Jin Kim
- CHA Cancer Institute and Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| | - Young-Hwa Chung
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
42
|
Luchinat E, Chiarella S, Franceschini M, Di Matteo A, Brunori M, Banci L, Federici L. Identification of a novel nucleophosmin-interaction motif in the tumor suppressor p14arf. FEBS J 2018; 285:832-847. [PMID: 29283500 DOI: 10.1111/febs.14373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022]
Abstract
The tumor suppressor p14arf interacts, in response to oncogenic signals, with the p53 E3-ubiquitin ligase HDM2, thereby resulting in p53 stabilization and activation. In addition, it also exerts tumor-suppressive functions in p53-independent contexts. The activities of p14arf are regulated by the nucleolar chaperone nucleophosmin (NPM1), which controls its levels and cellular localization. In acute myeloid leukemia with mutations in the NPM1 gene, mutated NPM1 aberrantly translocates in the cytosol carrying with itself p14arf that is subsequently degraded, thus impairing the p14arf-HDM2-p53 axis. In this work we investigated the complex between these two proteins by means of NMR and other techniques. We identified a novel NPM1-interacting motif in the C-terminal region of p14arf, which corresponds to its predicted nucleolar localization signal. This motif recognizes a specific region of the NPM1 N-terminal domain and, upon binding, the two proteins form soluble high molecular weight complexes. By NMR, we identified critical residues on both proteins involved in the interaction. Collectively, our data provide a structural framework to rationalize the overall assembly of the p14arf-NPM1 supramolecular complexes. A number of p14arf cancer-associated mutations cluster in this motif and their effect on the interaction with NPM1 was also analyzed.
Collapse
Affiliation(s)
- Enrico Luchinat
- CERM, Centro Risonanze Magnetiche, Università di Firenze, Italy.,Dipartimento di Scienze Biomediche, Sperimentali e Cliniche - Università di Firenze, Italy
| | - Sara Chiarella
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Mimma Franceschini
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Adele Di Matteo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli" - Sapienza Università di Roma, Italy
| | - Lucia Banci
- CERM, Centro Risonanze Magnetiche, Università di Firenze, Italy.,Dipartimento di Chimica, Università di Firenze, Italy
| | - Luca Federici
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| |
Collapse
|
43
|
Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget 2018; 7:44821-44840. [PMID: 27058426 PMCID: PMC5190137 DOI: 10.18632/oncotarget.8599] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Nucleophosmin is a highly and ubiquitously expressed protein, mainly localized in nucleoli but able to shuttle between nucleus and cytoplasm. Nucleophosmin plays crucial roles in ribosome maturation and export, centrosome duplication, cell cycle progression, histone assembly and response to a variety of stress stimuli. Much interest in this protein has arisen in the past ten years, since the discovery of heterozygous mutations in the terminal exon of the NPM1 gene, which are the most frequent genetic alteration in acute myeloid leukemia. Nucleophosmin is also frequently overexpressed in solid tumours and, in many cases, its overexpression correlates with mitotic index and metastatization. Therefore it is considered as a promising target for the treatment of both haematologic and solid malignancies. NPM1 targeting molecules may suppress different functions of the protein, interfere with its subcellular localization, with its oligomerization properties or drive its degradation. In the recent years, several such molecules have been described and here we review what is currently known about them, their interaction with nucleophosmin and the mechanistic basis of their toxicity. Collectively, these molecules exemplify a number of different strategies that can be adopted to target nucleophosmin and we summarize them at the end of the review.
Collapse
|
44
|
De Cola A, Franceschini M, Di Matteo A, Colotti G, Celani R, Clemente E, Ippoliti R, Cimini AM, Dhez AC, Vallée B, Raineri F, Cascone I, Destouches D, De Laurenzi V, Courty J, Federici L. N6L pseudopeptide interferes with nucleophosmin protein-protein interactions and sensitizes leukemic cells to chemotherapy. Cancer Lett 2017; 412:272-282. [PMID: 29111347 DOI: 10.1016/j.canlet.2017.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
NPM1 is a multifunctional nucleolar protein implicated in several processes such as ribosome maturation and export, DNA damage response and apoptotic response to stress stimuli. The NPM1 gene is involved in human tumorigenesis and is found mutated in one third of acute myeloid leukemia patients, leading to the aberrant cytoplasmic localization of NPM1. Recent studies indicated that the N6L multivalent pseudopeptide, a synthetic ligand of cell-surface nucleolin, is also able to bind NPM1 with high affinity. N6L inhibits cell growth with different mechanisms and represents a good candidate as a novel anticancer drug for a number of malignancies of different histological origin. In this study we investigated whether N6L treatment could drive antitumor effect in acute myeloid leukemia cell lines. We found that N6L binds NPM1 at the N-terminal domain, co-localizes with cytoplasmic, mutated NPM1, and interferes with its protein-protein associations. N6L toxicity appears to be p53 dependent but interestingly, the leukemic cell line harbouring the mutated form of NPM1 is more resistant to treatment, suggesting that NPM1 cytoplasmic delocalization confers protection from p53 activation. Moreover, we show that N6L sensitizes AML cells to doxorubicin and cytarabine treatment. These studies suggest that N6L may be a promising option in combination therapies for acute myeloid leukemia treatment.
Collapse
Affiliation(s)
- A De Cola
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - M Franceschini
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - A Di Matteo
- Istituto di Biologia e Patologia Molecolari del CNR, Rome, Italy
| | - G Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Rome, Italy
| | - R Celani
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - E Clemente
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - R Ippoliti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università dell'Aquila, L'Aquila, Italy
| | - A M Cimini
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università dell'Aquila, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, USA; National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - A C Dhez
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università dell'Aquila, L'Aquila, Italy
| | - B Vallée
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - F Raineri
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - I Cascone
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - D Destouches
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - V De Laurenzi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - J Courty
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - L Federici
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
45
|
Urbaneja MA, Skjærven L, Aubi O, Underhaug J, López DJ, Arregi I, Alonso-Mariño M, Cuevas A, Rodríguez JA, Martinez A, Bañuelos S. Conformational stabilization as a strategy to prevent nucleophosmin mislocalization in leukemia. Sci Rep 2017; 7:13959. [PMID: 29066752 PMCID: PMC5655693 DOI: 10.1038/s41598-017-14497-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/11/2017] [Indexed: 01/20/2023] Open
Abstract
Nucleophosmin (NPM) is a nucleolar protein involved in ribosome assembly and cell homeostasis. Mutations in the C-terminal domain of NPM that impair native folding and localization are associated with acute myeloid leukemia (AML). We have performed a high-throughput screening searching for compounds that stabilize the C-terminal domain. We identified three hit compounds which show the ability to increase the thermal stability of both the C-terminal domain as well as full-length NPM. The best hit also seemed to favor folding of an AML-like mutant. Computational pocket identification and molecular docking support a stabilization mechanism based on binding of the phenyl/benzene group of the compounds to a particular hydrophobic pocket and additional polar interactions with solvent-accessible residues. Since these results indicate a chaperoning potential of our candidate hits, we tested their effect on the subcellular localization of AML-like mutants. Two compounds partially alleviated the aggregation and restored nucleolar localization of misfolded mutants. The identified hits appear promising as pharmacological chaperones aimed at therapies for AML based on conformational stabilization of NPM.
Collapse
Affiliation(s)
- María A Urbaneja
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Oscar Aubi
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jarl Underhaug
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor Arregi
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
- R&D Department, Roxall España, Bilbao, Spain
| | - Marián Alonso-Mariño
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Cuevas
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
46
|
Di Matteo A, Franceschini M, Paiardini A, Grottesi A, Chiarella S, Rocchio S, Di Natale C, Marasco D, Vitagliano L, Travaglini-Allocatelli C, Federici L. Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ. Oncogenesis 2017; 6:e379. [PMID: 28920929 PMCID: PMC5623904 DOI: 10.1038/oncsis.2017.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment.
Collapse
Affiliation(s)
- A Di Matteo
- Istituto di Biologia e Patologia Molecolari - Consiglio Nazionale delle ricerche, Roma, Italy
| | - M Franceschini
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Chieti, Italy.,CeSI-Met - Università di Chieti-Pescara 'G d'Annunzio', Chieti, Italy
| | - A Paiardini
- Dipartimento di Biologia e Biotecnologie 'C Darwin' - Sapienza Università di Roma, Roma, Italy
| | - A Grottesi
- CINECA Consorzio Interuniversitario, Sede di Roma, Roma, Italy
| | - S Chiarella
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Chieti, Italy.,CeSI-Met - Università di Chieti-Pescara 'G d'Annunzio', Chieti, Italy
| | - S Rocchio
- Dipartimento di Scienze Biochimiche 'A Rossi Fanelli' - Sapienza Università di Roma, Roma, Italy
| | - C Di Natale
- Dipartimento di Farmacia,- Università di Napoli 'Federico II', Napoli, Italy
| | - D Marasco
- Dipartimento di Farmacia,- Università di Napoli 'Federico II', Napoli, Italy
| | - L Vitagliano
- Istituto di Biostrutture e Bioimmagini - Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - C Travaglini-Allocatelli
- Dipartimento di Scienze Biochimiche 'A Rossi Fanelli' - Sapienza Università di Roma, Roma, Italy
| | - L Federici
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Chieti, Italy.,CeSI-Met - Università di Chieti-Pescara 'G d'Annunzio', Chieti, Italy
| |
Collapse
|
47
|
Taglia I, Formichi P, Battisti C, Peppoloni G, Barghigiani M, Tessa A, Federico A. Primary familial brain calcification with a novel SLC20A2 mutation: Analysis of PiT-2 expression and localization. J Cell Physiol 2017; 233:2324-2331. [PMID: 28722801 DOI: 10.1002/jcp.26104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
Primary familial brain calcification (PFBC) is an autosomal dominant rare disorder characterized by bilateral and symmetric brain calcifications, and neuropsychiatric manifestations. Four genes have been linked to PFBC: SLC20A2, PDGFRB, PDGFB, and XPR1. In this study, we report molecular and clinical data of a PFBC patient carrying a novel SLC20A2 mutation and we investigate the impact of the mutation on PiT-2 expression and function. Sanger sequencing of SLC20A2, PDGFRB, PDGFB, XPR1 led to the identification of a novel duplication of twelve nucleotides (c.1876_1887dup/ p.Trp626_Thr629dup) in SLC20A2 gene. SLC20A2 encodes for a cell membrane transporter (PiT-2) involved in maintenance of inorganic phosphate homeostasis. We performed an analysis of expression and functionality of PiT-2 protein in patient primary cultured fibroblasts. In patient fibroblasts, the mutation does not affect PiT-2 expression but alter sub-cellular localization. The Pi-uptake assay revealed a less Pi depletion in patient than in control fibroblasts, suggesting that SLC20A2 duplication may impair Pi internalization. This is the first study reporting sub-cellular expression analysis of mutant PiT-2 in primary cultured fibroblasts from a PFBC patient, showing that p.Trp626_Thr629dup in SLC20A2 alters PiT-2 sub-cellular localization and reduces Pi-uptake, leading to onset of PFBC in our patient.
Collapse
Affiliation(s)
- Ilaria Taglia
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Carla Battisti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giulia Peppoloni
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Alessandra Tessa
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris, Pisa, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
48
|
The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease. Biochem Soc Trans 2017; 44:1086-90. [PMID: 27528756 PMCID: PMC4984446 DOI: 10.1042/bst20160106] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Ribosomes are abundant, large RNA–protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease.
Collapse
|
49
|
Brodská B, Kráčmarová M, Holoubek A, Kuželová K. Localization of AML-related nucleophosmin mutant depends on its subtype and is highly affected by its interaction with wild-type NPM. PLoS One 2017; 12:e0175175. [PMID: 28384310 PMCID: PMC5383266 DOI: 10.1371/journal.pone.0175175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/21/2017] [Indexed: 01/25/2023] Open
Abstract
Mutations of the gene for nucleophosmin (NPM1) are the most frequent genetic aberration in patients with acute myeloid leukemia (AML). The mechanism of leukemic transformation in this leukemia subtype is not fully understood, but aberrant cytoplasmic localization of mutated NPM (NPMmut) is widely considered as an important factor for leukemia manifestation. We analyzed the subcellular localization of three types of NPM with a C-terminal mutation (A, B and E). Genes for the individual NPM forms were fused with a gene for one of fluorescent protein variants in plasmids, which were transfected into three cell lines with different endogenous NPM expression. Subcellular localization of the fluorescent protein-labeled NPM was further correlated with the relative expression of all NPM forms. We confirmed a high cytoplasmic expression of NPMmutA and NPMmutB whereas a substantial fraction of NPMmutE was found to be localized in nucleoli. Moreover, we revealed that the localization of fluorescently labeled NPM is affected by the interaction between various forms of the protein.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
- * E-mail:
| | | | - Aleš Holoubek
- Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| |
Collapse
|
50
|
Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia 2017; 31:798-807. [PMID: 28111462 DOI: 10.1038/leu.2017.30] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by accumulation of myeloid cells in the bone marrow because of impaired differentiation and proliferation, resulting in hematopoietic insufficiency. NPM1 is one of the most commonly mutated genes in AML, present in 20-30% of cases. Mutations in NPM1 represent a distinct entity in the World Health Organization (WHO) classification and commonly indicate a better risk prognosis. In this review, we discuss the many functions of NPM1, the consequence of mutations in NPM1 and possible mechanisms through which mutations lead to leukemogenesis. We also discuss clinical consequences of mutations, associated gene expression patterns and the role of NPM1 mutations in informing prognosis and therapeutic decisions and predicting relapse in AML.
Collapse
Affiliation(s)
- E M Heath
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - S M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - M D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - T Murphy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - L I Shlush
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|