1
|
Alagesan K, Nagarajan H, Jeyakanthan J. Repurposing FDA-approved drugs for combating tigecycline resistance in Acinetobacter baumannii: in silico screening against BaeR protein. Mol Divers 2024:10.1007/s11030-024-10988-5. [PMID: 39327354 DOI: 10.1007/s11030-024-10988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Acinetobacter baumannii is becoming a gravely threatening nosocomial infection with a higher mortality rate. The present study targets the BaeR protein that mediates resistance to tigecycline antibiotics. The BaeR protein, along with the aid of BaeS, senses the incoming antibiotics and stimulates the expression of resistance proteins. These resistance proteins efflux the antibiotics and protect the cells from its effect. The main goal of the current study is to determine potential inhibitors from already existing FDA-approved drugs that could mitigate the BaeR protein. A range of in silico approaches, including molecular dynamics, virtual screening, SIFT analysis, ADMET, DFT, MM/GBSA, MMPBSA and per residue interaction analysis, were performed to identify inhibitors against this protein. The screening of FDA-approved compounds against the BaeR protein yielded 620 compounds. These compounds were clustered by SIFT to distinguish related compounds, it resulted in 20 different clusters. The top five clusters that can accommodate the binding site with better interaction and score by fulfilling all criteria were selected. The DFT analysis showed a smaller energy gap among all the compounds, indicating the ability of the compound to form firm interactions. All the compounds showed less binding free energy in both MM/GBSA and MM/PBSA analyses. The compounds were observed to be stable throughout the simulation. The per-residue interaction analysis confirmed that interactions with binding site residues were stable throughout the simulation. As a result of the study, four compounds, namely ZINC000003801919, DB01203, DB11217 and ZINC0000000056652, were identified as efficient candidates to deal with antimicrobial resistance in A. baumannii.
Collapse
Affiliation(s)
- Karthika Alagesan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
2
|
Identification of Multiple Low-Level Resistance Determinants and Coselection of Motility Impairment upon Sub-MIC Ceftriaxone Exposure in Escherichia coli. mSphere 2021; 6:e0077821. [PMID: 34787446 PMCID: PMC8597738 DOI: 10.1128/msphere.00778-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to third-generation cephalosporins among Gram-negative bacteria is a rapidly growing public health threat. Among the most commonly used third-generation cephalosporins is ceftriaxone. Bacterial exposure to sublethal or sub-MIC antibiotic concentrations occurs widely, from environmental residues to intermittently at the site of infection. Quality of ceftriaxone is also a concern, especially in low- and middle-income countries, with medicines having inappropriate active pharmaceutical ingredient (API) content or concentration. While focus has been largely on extended-spectrum β-lactamases and high-level resistance, there are limited data on specific chromosomal mutations and other pathways that contribute to ceftriaxone resistance under these conditions. In this work, Escherichia coli cells were exposed to a broad range of sub-MICs of ceftriaxone and mutants were analyzed using whole-genome sequencing. Low-level ceftriaxone resistance emerged after as low as 10% MIC exposure, with the frequency of resistance development increasing with concentration. Genomic analyses of mutants revealed multiple genetic bases. Mutations were enriched in genes associated with porins (envZ, ompF, ompC, and ompR), efflux regulation (marR), and the outer membrane and metabolism (galU and pgm), but none were associated with the ampC β-lactamase. We also observed selection of mgrB mutations. Notably, pleiotropic effects on motility and cell surface were selected for in multiple independent genes, which may have important consequences. Swift low-level resistance development after exposure to low ceftriaxone concentrations may result in reservoirs of bacteria with relevant mutations for survival and increased resistance. Thus, initiatives for broader surveillance of low-level antibiotic resistance and genomic resistance determinants should be pursued when resources are available. IMPORTANCE Ceftriaxone is a widely consumed antibiotic used to treat bacterial infections. Bacteria, however, are increasingly becoming resistant to ceftriaxone. Most work has focused on known mechanisms associated with high-level ceftriaxone resistance. However, bacteria are extensively exposed to low antibiotic concentrations, and there are limited data on the evolution of ceftriaxone resistance under these conditions. In this work, we observed that bacteria quickly developed low-level resistance due to both novel and previously described mutations in multiple different genes upon exposure to low ceftriaxone concentrations. Additionally, exposure also led to changes in motility and the cell surface, which can impact other processes associated with resistance and infection. Notably, low-level-resistant bacteria would be missed in the clinic, which uses set breakpoints. While they may require increased resources, this work supports continued initiatives for broader surveillance of low-level antibiotic resistance or their resistance determinants, which can serve as predictors of higher risk for clinical resistance.
Collapse
|
3
|
Maciunas LJ, Porter N, Lee PJ, Gupta K, Loll PJ. Structures of full-length VanR from Streptomyces coelicolor in both the inactive and activated states. Acta Crystallogr D Struct Biol 2021; 77:1027-1039. [PMID: 34342276 PMCID: PMC8329863 DOI: 10.1107/s2059798321006288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
Vancomycin has historically been used as a last-resort treatment for serious bacterial infections. However, vancomycin resistance has become widespread in certain pathogens, presenting a serious threat to public health. Resistance to vancomycin is conferred by a suite of resistance genes, the expression of which is controlled by the VanR-VanS two-component system. VanR is the response regulator in this system; in the presence of vancomycin, VanR accepts a phosphoryl group from VanS, thereby activating VanR as a transcription factor and inducing expression of the resistance genes. This paper presents the X-ray crystal structures of full-length VanR from Streptomyces coelicolor in both the inactive and activated states at resolutions of 2.3 and 2.0 Å, respectively. Comparison of the two structures illustrates that phosphorylation of VanR is accompanied by a disorder-to-order transition of helix 4, which lies within the receiver domain of the protein. This transition generates an interface that promotes dimerization of the receiver domain; dimerization in solution was verified using analytical ultracentrifugation. The inactive conformation of the protein does not appear intrinsically unable to bind DNA; rather, it is proposed that in the activated form DNA binding is enhanced by an avidity effect contributed by the receiver-domain dimerization.
Collapse
Affiliation(s)
- Lina J. Maciunas
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Graduate Program in Biochemistry, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Nadia Porter
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Summer Undergraduate Research Fellowship Program, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Paula J. Lee
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Patrick J. Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
4
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Miyake Y, Yamamoto K. Epistatic Effect of Regulators to the Adaptive Growth of Escherichia coli. Sci Rep 2020; 10:3661. [PMID: 32108145 PMCID: PMC7046781 DOI: 10.1038/s41598-020-60353-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
Bacteria survive in the environment with three steps: a sensing environmental conditions, a responding to sensed signals, and an adaptation for proper survival in the environment. An adapting bacterial cell occurs cell division to increase the number of sister cells, termed adaptive growth. Two-component systems (TCSs), representing the main bacterial signal transduction systems, consist of a pair of one sensor kinase (SK) and one response regulator (RR), and RR genes are abundant in most bacterial genomes as part of the core genome. The OmpR gene family, a group of RR genes, is conserved in 95% of known bacterial genomes. The Escherichia coli genome has an estimated 34 RR genes in total, including 14 genes of OmpR family genes. To reveal the contribution of TCSs for fast growth as an adaptive growth strategy of E. coli, we isolated a set of gene knockout strains by using newly developed genome editing technology, the HoSeI (Homologous Sequence Integration) method, based on CRISPR-Cas9. The statistics of single cell observation show a knockout of an arbitrary pair of phoP, phoB, and ompR genes, stably expressed by positive feedback regulation, dramatically inhibit the optimum adaptive growth of E. coli. These insights suggest that the adaptive growth of bacteria is fulfilled by the optimum high intracellular level of regulators acquired during growth under environmental conditions.
Collapse
Affiliation(s)
- Yukari Miyake
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan.
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-8584, Japan.
| |
Collapse
|
6
|
Abstract
Response regulators function as the output components of two-component systems, which couple the sensing of environmental stimuli to adaptive responses. Response regulators typically contain conserved receiver (REC) domains that function as phosphorylation-regulated switches to control the activities of effector domains that elicit output responses. This modular design is extremely versatile, enabling different regulatory strategies tuned to the needs of individual signaling systems. This review summarizes structural features that underlie response regulator function. An abundance of atomic resolution structures and complementary biochemical data have defined the mechanisms for response regulator enzymatic activities, revealed trends in regulatory strategies utilized by response regulators of different subfamilies, and provided insights into interactions of response regulators with their cognate histidine kinases. Among the hundreds of thousands of response regulators identified, variations abound. This article provides a framework for understanding structural features that enable function of canonical response regulators and a basis for distinguishing noncanonical configurations.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Sophie Bouillet
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| |
Collapse
|
7
|
Kou X, Liu Y, Li C, Liu M, Jiang L. Dimerization and Conformational Exchanges of the Receiver Domain of Response Regulator PhoB from Escherichia coli. J Phys Chem B 2018; 122:5749-5757. [DOI: 10.1021/acs.jpcb.8b01034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinhui Kou
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
8
|
Khosa S, Hoeppner A, Gohlke H, Schmitt L, Smits SHJ. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance. PLoS One 2016; 11:e0149903. [PMID: 26930060 PMCID: PMC4773095 DOI: 10.1371/journal.pone.0149903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 01/22/2023] Open
Abstract
Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding.
Collapse
Affiliation(s)
- Sakshi Khosa
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Astrid Hoeppner
- X-Ray Facility and Crystal Farm, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
9
|
Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallogr D Struct Biol 2016; 72:359-74. [PMID: 26960123 PMCID: PMC4784667 DOI: 10.1107/s2059798315019403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023] Open
Abstract
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016), Acta Cryst. D72, 346-358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Gábor Bunkóczi
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Mail Stop D454, Los Alamos, NM 87545, USA
| | - Peter H. Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Khosa S, Hoeppner A, Kleinschrodt D, Smits SHJ. Overexpression, purification and crystallization of the response regulator NsrR involved in nisin resistance. Acta Crystallogr F Struct Biol Commun 2015; 71:1322-6. [PMID: 26457525 PMCID: PMC4601598 DOI: 10.1107/s2053230x15016441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/03/2015] [Indexed: 11/10/2022] Open
Abstract
A number of Gram-positive bacteria produce a class of bacteriocins called `lantibiotics'. These lantibiotics are ribosomally synthesized peptides that possess high antimicrobial activity against Gram-positive bacteria, including clinically challenging pathogens, and are therefore potential alternatives to antibiotics. All lantibiotic producer strains and some Gram-positive nonproducer strains express protein systems to circumvent a suicidal effect or to become resistant, respectively. Two-component systems consisting of a response regulator and a histidine kinase upregulate the expression of these proteins. One of the best-characterized lantibiotics is nisin, which is produced by Lactococcus lactis and possesses bactericidal activity against various Gram-positive bacteria, including some human pathogenic strains. Within many human pathogenic bacterial strains inherently resistant to nisin, a response regulator, NsrR, has been identified which regulates the expression of proteins involved in nisin resistance. In the present study, an expression and purification protocol was established for the NsrR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method, resulting in crystals that diffracted X-rays to 1.4 Å resolution.
Collapse
Affiliation(s)
- Sakshi Khosa
- Institute of Biochemistry, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Astrid Hoeppner
- Crystal Farm and X-ray Facility, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Diana Kleinschrodt
- Protein Production Facility, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Ahmad A, Cai Y, Chen X, Shuai J, Han A. Conformational Dynamics of Response Regulator RegX3 from Mycobacterium tuberculosis. PLoS One 2015. [PMID: 26201027 PMCID: PMC4511772 DOI: 10.1371/journal.pone.0133389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two-component signal transduction systems (TCS) are vital for adaptive responses to various environmental stresses in bacteria, fungi and even plants. A TCS typically comprises of a sensor histidine kinase (SK) with its cognate response regulator (RR), which often has two domains—N terminal receiver domain (RD) and C terminal effector domain (ED). The histidine kinase phosphorylates the RD to activate the ED by promoting dimerization. However, despite significant progress on structural studies, how RR transmits activation signal from RD to ED remains elusive. Here we analyzed active to inactive transition process of OmpR/PhoB family using an active conformation of RegX3 from Mycobacterium tuberculosis as a model system by computational approaches. An inactive state of RegX3 generated from 150 ns molecular dynamic simulation has rotameric conformations of Thr79 and Tyr98 that are generally conserved in inactive RRs. Arg81 in loop β4α4 acts synergistically with loop β1α1 to change its interaction partners during active to inactive transition, potentially leading to the N-terminal movement of RegX3 helix α1. Global conformational dynamics of RegX3 is mainly dependent on α4β5 region, in particular seven ‘hot-spot’ residues (Tyr98 to Ser104), adjacent to which several coevolved residues at dimeric interface, including Ile76-Asp96, Asp97-Arg111 and Glu24-Arg113 pairs, are critical for signal transduction. Taken together, our computational analyses suggest a molecular linkage between Asp phosphorylation, proximal loops and α4β5α5 dimeric interface during RR active to inactive state transition, which is not often evidently defined from static crystal structures.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Xingqiang Chen
- Department of Physics, Xiamen University, Siming, Xiamen, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Siming, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| |
Collapse
|
12
|
A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. PLoS One 2015; 10:e0120094. [PMID: 25782011 PMCID: PMC4364456 DOI: 10.1371/journal.pone.0120094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/24/2015] [Indexed: 01/10/2023] Open
Abstract
Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16) harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins), rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs) that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.
Collapse
|