1
|
Tian R, Feng J, Huang G, Tian B, Zhang Y, Jiang L, Sui X. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. ULTRASONICS SONOCHEMISTRY 2020; 68:105202. [PMID: 32593148 DOI: 10.1016/j.ultsonch.2020.105202] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 05/06/2023]
Abstract
The effect of ultrasound on the conformational and physicochemical properties of soy protein isolate hydrolysates (SPHs) was investigated. SPHs were prepared at hydrolysis times of 20 min, 60 min, and 180 min, then treated with ultrasound for 10 min, 20 min, and 30 min at a frequency of 20 kHz and output powers of 150 W and 450 W. The structural properties and antioxidant capacities of the aqueous layer of SPHs (ASPHs) after sonication were evaluated by Fourier-transform infrared spectroscopy (FTIR), intrinsic fluorescence, DPPH radical scavenging activity assays, and microscopy observations. Results obtained showed that ultrasound treatment significantly disrupted the peptide aggregates formed during protein hydrolysis. The protein solubility was significantly increased after sonication (by up to 18.33%), as did the percentage of proteins with MW < 1 kDa in ASPHs. The antioxidant capacity of ASPHs also increased, as measured by DPPH assay. FTIR analysis of ASPHs indicated that the protein secondary structures were different, with an increase in β-sheet and a decrease in α-helix and β-turn. Furthermore, the changes in fluorescence spectra of ASPHs showed the transition of protein tertiary structure with a greater exposure of Trp residues in the side chains. Scanning electron microscope (SEM) and atomic force microscope (AFM) observations of the morphological structure of ASPHs further confirmed the significant effect of sonication on disrupting peptide aggregates. In conclusion, ultrasound can be used as an efficient treatment to promote the solubility of protein hydrolysates.
Collapse
Affiliation(s)
- Ran Tian
- College of Food Science, Northeast Agricultural University, China
| | - Junran Feng
- College of Food Science, Northeast Agricultural University, China
| | - Guo Huang
- College of Food Science, Northeast Agricultural University, China
| | - Bo Tian
- College of Food Science, Northeast Agricultural University, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China.
| |
Collapse
|
2
|
Augustijn D, Kulakova A, Mahapatra S, Harris P, Rinnan Å. Isothermal Chemical Denaturation: Data Analysis, Error Detection, and Correction by PARAFAC2. Anal Chem 2020; 92:6958-6967. [PMID: 32323977 DOI: 10.1021/acs.analchem.9b05748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Characterization of a protein's conformational stability is a key step in the development of biotherapeutics, where protein unfolding leads to adverse properties, such as aggregation and loss of efficacy. Isothermal chemical denaturation (ICD) can be applied to determine chemical stability, aiming to identify the optimal solvent conditions, in terms of pH, salt concentration, and added excipients. For seven monoclonal antibodies, this study investigates the observed intrinsic protein fluorescence emission spectra as a function of denaturant concentration. Protein formulations are screened in two experimental series. We show how the peak shapes of folded and unfolded proteins are preserved under added salt (0-140 mM NaCl) and added excipients concentrations, as typically found in biotherapeutic formulations and that only minor effects in tryptophan fluorescence peak tailing are observed over a large pH range (5.5-9.0). The data of seven mAbs, where GuHCl was a suitable denaturant, are modeled using PARAFAC2. PARAFAC2, a linear decomposition method, is well suited for the data and yields robust, valid, and automated models that allow for the detection of erroneous measurements. Analysis of the errors show correlation with the well-based experimental setup, and differences in observed errors between the two experimental series. We additionally show a correction method for these outliers based on PARAFAC2 model scores, such that full transition curves can be retrieved, increasing the accuracy of any subsequent analysis.
Collapse
Affiliation(s)
- Dillen Augustijn
- Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Alina Kulakova
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Sujata Mahapatra
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark.,Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Åsmund Rinnan
- Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Microenvironment of tryptophan residues in proteins of four structural classes: applications for fluorescence and circular dichroism spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:523-537. [DOI: 10.1007/s00249-019-01377-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 04/26/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
|
4
|
Najor M, Leverson BD, Goossens JL, Kothawala S, Olsen KW, Mota de Freitas D. Folding of G α Subunits: Implications for Disease States. ACS OMEGA 2018; 3:12320-12329. [PMID: 30411001 PMCID: PMC6210069 DOI: 10.1021/acsomega.8b01174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
G-proteins play a central role in signal transduction by fluctuating between "on" and "off" phases that are determined by a conformational change. cAMP is a secondary messenger whose formation is inhibited or stimulated by activated Giα1 or Gsα subunit. We used tryptophan fluorescence, UV/vis spectrophotometry, and circular dichroism to probe distinct structural features within active and inactive conformations from wild-type and tryptophan mutants of Giα1 and Gsα. For all proteins studied, we found that the active conformations were more stable than the inactive conformations, and upon refolding from higher temperatures, activated wild-type subunits recovered significantly more native structure. We also observed that the wild-type subunits partially regained the ability to bind nucleotide. The increased compactness observed upon activation was consistent with the calculated decrease in solvent accessible surface area for wild-type Giα1. We found that as the temperature increased, Gα subunits, which are known to be rich in α-helices, converted to proteins with increased content of β-sheets and random coil. For active conformations from wild-type and tryptophan mutants of Giα1, melting temperatures indicated that denaturation starts around hydrophobic tryptophan microenvironments and then radiates toward tyrosine residues at the surface, followed by alteration of the secondary structure. For Gsα, however, disruption of secondary structure preceded unfolding around tyrosine residues. In the active conformations, a π-cation interaction between essential arginine and tryptophan residues, which was characterized by a fluorescence-measured red shift and modeled by molecular dynamics, was also shown to be a contributor to the stability of Gα subunits. The folding properties of Gα subunits reported here are discussed in the context of diseases associated to G-proteins.
Collapse
|
5
|
Hazel AJ, Walters ET, Rowley CN, Gumbart JC. Folding free energy landscapes of β-sheets with non-polarizable and polarizable CHARMM force fields. J Chem Phys 2018; 149:072317. [PMID: 30134731 DOI: 10.1063/1.5025951] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular dynamics (MD) simulations of peptides and proteins offer atomic-level detail into many biological processes, although the degree of insight depends on the accuracy of the force fields used to represent them. Protein folding is a key example in which the accurate reproduction of folded-state conformations of proteins and kinetics of the folding processes in simulation is a longstanding goal. Although there have been a number of recent successes, challenges remain in capturing the full complexity of folding for even secondary-structure elements. In the present work, we have used all-atom MD simulations to study the folding properties of one such element, the C-terminal β-hairpin of the B1 domain of streptococcal protein G (GB1). Using replica-exchange umbrella sampling simulations, we examined the folding free energy of two fixed-charge CHARMM force fields, CHARMM36 and CHARMM22*, as well as a polarizable force field, the CHARMM Drude-2013 model, which has previously been shown to improve the folding properties of α-helical peptides. The CHARMM22* and Drude-2013 models are in rough agreement with experimental studies of GB1 folding, while CHARMM36 overstabilizes the β-hairpin. Additional free-energy calculations show that small adjustments to the atomic polarizabilities in the Drude-2013 model can improve both the backbone solubility and folding properties of GB1 without significantly affecting the model's ability to properly fold α-helices. We also identify a non-native salt bridge in the β-turn region that overstabilizes the β-hairpin in the C36 model. Finally, we demonstrate that tryptophan fluorescence is insufficient for capturing the full β-hairpin folding pathway.
Collapse
Affiliation(s)
- Anthony J Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Evan T Walters
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B3X7, Canada
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B3X7, Canada
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
6
|
Lopez AJ, Martínez L. Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations. J Comput Chem 2018; 39:1249-1258. [PMID: 29484676 DOI: 10.1002/jcc.25188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/22/2017] [Accepted: 01/28/2018] [Indexed: 12/21/2022]
Abstract
Fluorescence spectroscopy is an important method to study protein conformational dynamics and solvation structures. Tryptophan (Trp) residues are the most important and practical intrinsic probes for protein fluorescence due to the variability of their fluorescence wavelengths: Trp residues emit in wavelengths ranging from 308 to 360 nm depending on the local molecular environment. Fluorescence involves electronic transitions, thus its computational modeling is a challenging task. We show that it is possible to predict the wavelength of emission of a Trp residue from classical molecular dynamics simulations by computing the solvent-accessible surface area or the electrostatic interaction between the indole group and the rest of the system. Linear parametric models are obtained to predict the maximum emission wavelengths with standard errors of the order 5 nm. In a set of 19 proteins with emission wavelengths ranging from 308 to 352 nm, the best model predicts the maximum wavelength of emission with a standard error of 4.89 nm and a quadratic Pearson correlation coefficient of 0.81. These models can be used for the interpretation of fluorescence spectra of proteins with multiple Trp residues, or for which local Trp environmental variability exists and can be probed by classical molecular dynamics simulations. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alvaro J Lopez
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, SP, Brazil
| | - Leandro Martínez
- Institute of Chemistry and Center for Computational Engineering & Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|