1
|
Shinde YD, Chowdhury C. Potential utility of bacterial protein nanoreactor for sustainable in-situ biocatalysis in wide range of bioprocess conditions. Enzyme Microb Technol 2024; 173:110354. [PMID: 37988973 DOI: 10.1016/j.enzmictec.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles that natively encapsulates the enzymes, substrates, and cofactors within a protein shell. They optimize the reaction rates by enriching the substrate in the vicinity of enzymes to increase the yields of the product and mitigate the outward diffusion of the toxic or volatile intermediates. The shell protein subunits of MCP shell are selectively permeable and have specialized pores for the selective inward diffusion of substrates and products release. Given their attributes, MCPs have been recently explored as potential candidates as subcellular nano-bioreactor for the enhanced production of industrially important molecules by exercising pathway encapsulation. In the current study, MCPs have been shown to sustain enzyme activity for extended periods, emphasizing their durability against a range of physical challenges such as temperature, pH and organic solvents. The significance of an intact shell in conferring maximum protection is highlighted by analyzing the differences in enzyme activities inside the intact and broken shell. Moreover, a minimal synthetic shell was designed with recruitment of a heterologous enzyme cargo to demonstrate the improved durability of the enzyme. The encapsulated enzyme was shown to be more stable than its free counterpart under the aforementioned conditions. Bacterial MCP-mediated encapsulation can serve as a potential strategy to shield the enzymes used under extreme conditions by maintaining the internal microenvironment and enhancing their cycle life, thereby opening new means for stabilizing, and reutilizing the enzymes in several bioprocess industries.
Collapse
Affiliation(s)
- Yashodhara D Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
2
|
Kumar G, Bari NK, Hazra JP, Sinha S. A major shell protein of 1,2-propanediol utilization microcompartment conserves the activity of its signature enzyme at higher temperatures. Chembiochem 2022; 23:e202100694. [PMID: 35229962 DOI: 10.1002/cbic.202100694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Indexed: 11/11/2022]
Abstract
A classic example of an all-protein natural nano-bioreactor, the bacterial microcompartment is a special kind of prokaryotic organelle that confine enzymes within a small volume enveloped by an outer protein shell. These protein compartments metabolize specific organic molecules, allowing bacteria to survive in restricted nutrient environments. In this work, 1,2-propanediol utilization microcompartment (PduMCP) is used as a model to study the effect of molecular confinement on the stability and catalytic activity of native enzymes in microcompartment. A combination of enzyme assays, spectroscopic techniques, binding assays, and computational analysis are used to evaluate the impact of the major shell protein PduBB' on the stability and activity of PduMCP's signature enzyme, diol dehydratase PduCDE. While free PduCDE shows ~45% reduction in its optimum activity (activity at 37 o C) when exposed to a temperature of 45°C, it retains similar activity up to 50°C when encapsulated within PduMCP. PduBB', a major component of the outer shell of PduMCP, preserves the catalytic efficiency of PduCDE under thermal stress and prevents temperature-induced unfolding and aggregation of PduCDE in vitro . We observe that while both PduB and PduB' interact with the enzyme with micromolar affinity, only the PduBB' combination influences its activity and stability, highlighting the importance of the unique PduBB' combination in the functioning of PduMCP.
Collapse
Affiliation(s)
- Gaurav Kumar
- Institute of Nano Science and Technology, Chemical Biology Unit, Sector-81, Knowledge City, 140306, Mohali, INDIA
| | - Naimat Kalim Bari
- Institute of Nano Science and Technology, Chemical Biology Unit, Sector-81, Knowledge City, 140306, Mohali, INDIA
| | - Jagadish P Hazra
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, Sector-81, Knowledge City, 140306, Mohali, INDIA
| | - Sharmistha Sinha
- Institute of Nano Science and Technology, Chemical Biology Unit, Sector-81, Knowledge City, 140306, Mohali, INDIA
| |
Collapse
|
3
|
Kumar G, Sinha S. Biophysical approaches to understand and re-purpose bacterial microcompartments. Curr Opin Microbiol 2021; 63:43-51. [PMID: 34166983 DOI: 10.1016/j.mib.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Bacterial microcompartments represent a modular class of prokaryotic organelles associated with metabolic processes. They harbor a congregation of enzymes that work in cascade within a small, confined volume. These sophisticated nano-engineered crafts of nature offer a tempting paradigm for the fabrication of biosynthetic nanoreactors. Repurposing bacterial microcompartments to develop nanostructures with desired functions requires a careful manipulation in their structural makeup and composition. This calls for a comprehensive understanding of all the interactions of the physical components which frame such molecular architectures. Over recent years, several biophysical techniques have been essential in illuminating the role played by bacterial microcompartments within cells, and have revealed crucial details regarding the morphology, physical properties and functions of their constituent proteins. This has promoted contemplation of ideas for engineering microcompartments inspired biomaterials with novel features and functions.
Collapse
Affiliation(s)
- Gaurav Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali (SAS Nagar), Knowledge City, Punjab 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali (SAS Nagar), Knowledge City, Punjab 140306, India.
| |
Collapse
|
4
|
Apparent size and morphology of bacterial microcompartments varies with technique. PLoS One 2020; 15:e0226395. [PMID: 32150579 PMCID: PMC7062276 DOI: 10.1371/journal.pone.0226395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/25/2020] [Indexed: 12/30/2022] Open
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that encapsulate metabolic pathways. Metabolic engineers have recently sought to repurpose MCPs to encapsulate heterologous pathways to increase flux through pathways of interest. As MCP engineering becomes more common, standardized methods for analyzing changes to MCPs and interpreting results across studies will become increasingly important. In this study, we demonstrate that different imaging techniques yield variations in the apparent size of purified MCPs from Salmonella enterica serovar Typhimurium LT2, likely due to variations in sample preparation methods. We provide guidelines for preparing samples for MCP imaging and outline expected variations in apparent size and morphology between methods. With this report we aim to establish an aid for comparing results across studies.
Collapse
|
5
|
Faulkner M, Zhao LS, Barrett S, Liu LN. Self-Assembly Stability and Variability of Bacterial Microcompartment Shell Proteins in Response to the Environmental Change. NANOSCALE RESEARCH LETTERS 2019; 14:54. [PMID: 30747342 PMCID: PMC6372710 DOI: 10.1186/s11671-019-2884-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/31/2019] [Indexed: 05/04/2023]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous self-assembling organelles that are widespread among the prokaryotic kingdom. By segmenting key metabolic enzymes and pathways using a polyhedral shell, BMCs play essential roles in carbon assimilation, pathogenesis, and microbial ecology. The BMC shell is composed of multiple protein homologs that self-assemble to form the defined architecture. There is tremendous interest in engineering BMCs to develop new nanobioreactors and molecular scaffolds. Here, we report the quantitative characterization of the formation and self-assembly dynamics of BMC shell proteins under varying pH and salt conditions using high-speed atomic force microscopy (HS-AFM). We show that 400-mM salt concentration is prone to result in larger single-layered shell patches formed by shell hexamers, and a higher dynamic rate of hexamer self-assembly was observed at neutral pH. We also visualize the variability of shell proteins from hexameric assemblies to fiber-like arrays. This study advances our knowledge about the stability and variability of BMC protein self-assemblies in response to microenvironmental changes, which will inform rational design and construction of synthetic BMC structures with the capacity of remodeling their self-assembly and structural robustness. It also offers a powerful toolbox for quantitatively assessing the self-assembly and formation of BMC-based nanostructures in biotechnology applications.
Collapse
Affiliation(s)
- Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Long-Sheng Zhao
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Steve Barrett
- Department of Physics, University of Liverpool, L69 7ZE, Liverpool, UK
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| |
Collapse
|
6
|
Nichols TM, Kennedy NW, Tullman-Ercek D. Cargo encapsulation in bacterial microcompartments: Methods and analysis. Methods Enzymol 2019; 617:155-186. [PMID: 30784401 PMCID: PMC6590060 DOI: 10.1016/bs.mie.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic engineers seek to produce high-value products from inexpensive starting materials in a sustainable and cost-effective manner by using microbes as cellular factories. However, pathway development and optimization can be arduous tasks, complicated by pathway bottlenecks and toxicity. Pathway organization has emerged as a potential solution to these issues, and the use of protein- or DNA-based scaffolds has successfully increased the production of several industrially relevant compounds. These efforts demonstrate the usefulness of pathway colocalization and spatial organization for metabolic engineering applications. In particular, scaffolding within an enclosed, subcellular compartment shows great promise for pathway optimization, offering benefits such as increased local enzyme and substrate concentrations, sequestration of toxic or volatile intermediates, and alleviation of cofactor and resource competition with the host. Here, we describe the 1,2-propanediol utilization (Pdu) bacterial microcompartment (MCP) as an enclosed scaffold for pathway sequestration and organization. We first describe methods for controlling Pdu MCP formation, expressing and encapsulating heterologous cargo, and tuning cargo loading levels. We further describe assays for analyzing Pdu MCPs and assessing encapsulation levels. These methods will enable the repurposing of MCPs as tunable nanobioreactors for heterologous pathway encapsulation.
Collapse
Affiliation(s)
- Taylor M Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Technological Institute, Evanston, IL, United States.
| |
Collapse
|
7
|
Building a toolbox of protein scaffolds for future immobilization of biocatalysts. Appl Microbiol Biotechnol 2018; 102:8373-8388. [DOI: 10.1007/s00253-018-9252-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
|
8
|
Bari NK, Kumar G, Bhatt A, Hazra JP, Garg A, Ali ME, Sinha S. Nanoparticle Fabrication on Bacterial Microcompartment Surface for the Development of Hybrid Enzyme-Inorganic Catalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Naimat Kalim Bari
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Gaurav Kumar
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Aashish Bhatt
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Ankush Garg
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Md. Ehesan Ali
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Sharmistha Sinha
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab 160062, India
| |
Collapse
|
9
|
Wagner HJ, Capitain CC, Richter K, Nessling M, Mampel J. Engineering bacterial microcompartments with heterologous enzyme cargos. Eng Life Sci 2016; 17:36-46. [PMID: 32624727 DOI: 10.1002/elsc.201600107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/16/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023] Open
Abstract
Bacterial microcompartments (BMCs) are intracellular proteinaceous organelles devoid of a lipid membrane that encapsulates enzymes of metabolic pathways. Salmonella enterica synthesizes propanediol-utilization BMCs containing enzymes involved in the degradation of 1,2-propanediol. BMCs can be designed to enclose heterologous proteins, paving the way to engineered catalytic microreactors. Here, we investigate broader applicability of this design principle by directing three different enzymes to the BMC. We demonstrate that β-galactosidase, esterase Est5, and cofactor-dependent glycerol dehydrogenase can be directed to the BMC and copurified with the microcompartment shell in a catalytically active form. We show that the BMC shell protects enzymes from pH-dependent but not from temperature stress. Moreover, we provide evidence that the heterologously expressed BMCs act as a moderately selective diffusion barrier for lipophilic small molecules.
Collapse
Affiliation(s)
- Hanna J Wagner
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany.,Faculty of Biology and Spemann Graduate School of Biology and Medicine (SGBM) University of Freiburg Freiburg Germany
| | - Charlotte C Capitain
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany.,Department of Biotechnology Mannheim University of Applied Sciences Mannheim Germany
| | - Karsten Richter
- German Cancer Research Centre (DKFZ) Core Facility Electron Microscopy (W230) Heidelberg Germany
| | - Michelle Nessling
- German Cancer Research Centre (DKFZ) Core Facility Electron Microscopy (W230) Heidelberg Germany
| | - Jörg Mampel
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| |
Collapse
|
10
|
Cassidy-Amstutz C, Oltrogge L, Going CC, Lee A, Teng P, Quintanilla D, East-Seletsky A, Williams ER, Savage DF. Identification of a Minimal Peptide Tag for in Vivo and in Vitro Loading of Encapsulin. Biochemistry 2016; 55:3461-8. [DOI: 10.1021/acs.biochem.6b00294] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Caleb Cassidy-Amstutz
- Department
of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
| | - Luke Oltrogge
- Department
of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
| | - Catherine C. Going
- Department
of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Antony Lee
- Department
of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Poh Teng
- Department
of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
| | - David Quintanilla
- Department
of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
| | - Alexandra East-Seletsky
- Department
of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
| | - Evan R. Williams
- Department
of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Energy
Biosciences Institute, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Held M, Kolb A, Perdue S, Hsu SY, Bloch SE, Quin MB, Schmidt-Dannert C. Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli. Sci Rep 2016; 6:24359. [PMID: 27063436 PMCID: PMC4827028 DOI: 10.1038/srep24359] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/29/2016] [Indexed: 01/17/2023] Open
Abstract
Compartmentalization of designed metabolic pathways within protein based nanocompartments has the potential to increase reaction efficiency in multi-step biosynthetic reactions. We previously demonstrated proof-of-concept of this aim by targeting a functional enzyme to single cellular protein nanocompartments, which were formed upon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK in Escherichia coli. To optimize this system, increasing overall encapsulated enzyme reaction efficiency, factor(s) required for the production of more than one nanocompartment per cell must be identified. In this work we report that the cupin domain protein EutQ is required for assembly of more than one nanocompartment per cell. Overexpression of EutQ results in multiple nanocompartment assembly in our recombinant system. EutQ specifically interacts with the shell protein EutM in vitro via electrostatic interactions with the putative cytosolic face of EutM. These findings lead to the theory that EutQ could facilitate multiple nanocompartment biogenesis by serving as an assembly hub for shell proteins. This work offers insights into the biogenesis of Eut bacterial microcompartments, and also provides an improved platform for the production of protein based nanocompartments for targeted encapsulation of enzyme pathways.
Collapse
Affiliation(s)
- Mark Held
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Alexander Kolb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah Perdue
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Szu-Yi Hsu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah E Bloch
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Maureen B Quin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
12
|
Encapsulation as a Strategy for the Design of Biological Compartmentalization. J Mol Biol 2015; 428:916-27. [PMID: 26403362 DOI: 10.1016/j.jmb.2015.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/16/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Compartmentalization is one of the defining features of life. Through intracellular spatial control, cells are able to organize and regulate their metabolism. One of the most broadly used organizational principles in nature is encapsulation. Cellular processes can be encapsulated within either membrane-bound organelles or proteinaceous compartments that create distinct microenvironments optimized for a given task. Further challenges addressed through intracellular compartmentalization are toxic or volatile pathway intermediates, slow turnover rates and competing side reactions. This review highlights a selection of naturally occurring membrane- and protein-based encapsulation systems in microbes and their recent applications and emerging opportunities in synthetic biology. We focus on examples that use engineered cellular organization to control metabolic pathway flux for the production of useful compounds and materials.
Collapse
|