1
|
Helal M, Dadachova E. Radioimmunotherapy as a Novel Approach in HIV, Bacterial, and Fungal Infectious Diseases. Cancer Biother Radiopharm 2018; 33:330-335. [PMID: 30133305 DOI: 10.1089/cbr.2018.2481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the past several decades, many antimicrobial agents have been used in treating different fungal, bacterial, and viral infections. However, these agents have faced challenges such as pronounced side-effect profiles and pathogen resistance. In addition, a cure for many chronic infections such as human immunodeficiency virus (HIV) has not been achieved, and the incidence of opportunistic infections in immunocompromised patients has increased significantly in the past decades. Therefore, an alternative strategy for combating these infections is needed. Radioimmunotherapy (RIT) has been proposed to be a valuable tool in the management of such infections. The side-effects associated with RIT are minimal as the targeted antigens are only expressed on microbial or infected cells. RIT demonstrated impressive potency in eradicating pathogens in animal models and patient samples. Cryptococcus neoformans, HIV, and Bacillus anthracis are few examples of infections for which RIT has been an effective treatment using radionuclides such as bismuth-213 (213Bi) or rhenium-188 (188Re).
Collapse
Affiliation(s)
- Muath Helal
- University of Saskatchewan , Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
2
|
Kessans SA, Linhart MD, Meador LR, Kilbourne J, Hogue BG, Fromme P, Matoba N, Mor TS. Immunological Characterization of Plant-Based HIV-1 Gag/Dgp41 Virus-Like Particles. PLoS One 2016; 11:e0151842. [PMID: 26986483 PMCID: PMC4795674 DOI: 10.1371/journal.pone.0151842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/04/2016] [Indexed: 02/08/2023] Open
Abstract
It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR--a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.
Collapse
Affiliation(s)
- Sarah A. Kessans
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Mark D. Linhart
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Lydia R. Meador
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Petra Fromme
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Nobuyuki Matoba
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Tsafrir S. Mor
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
3
|
Biophysical Characterization of a Vaccine Candidate against HIV-1: The Transmembrane and Membrane Proximal Domains of HIV-1 gp41 as a Maltose Binding Protein Fusion. PLoS One 2015; 10:e0136507. [PMID: 26295457 PMCID: PMC4546420 DOI: 10.1371/journal.pone.0136507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
Abstract
The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.
Collapse
|