1
|
Bilgin N, Hintzen JCJ, Mecinović J. Chemical tools for probing histidine modifications. Chem Commun (Camb) 2025; 61:3805-3820. [PMID: 39936705 DOI: 10.1039/d4cc06586g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Histidine is a unique amino acid with critical roles in protein structure and function, ranging from metal ion binding to enzyme catalysis. Histidine residues in proteins also undergo diverse posttranslational modifications, including methylation, phosphorylation and hydroxylation, by various enzymes, some of them being only recently identified and characterised. In this review, we describe the development of chemical tools for understanding the role of histidine residues in chemical and biological systems. We spotlight the application of histidine analogues in probing biomedically important posttranslational modifications of histidine residues in proteins, and we highlight novel bioconjugation methods that enable chemoselective modifications of histidine residues in peptides and proteins.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jordi C J Hintzen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
2
|
Ring CM, Iqbal ES, Hacker DE, Hartman MCT, Cropp TA. Genetic incorporation of 4-fluorohistidine into peptides enables selective affinity purification. Org Biomol Chem 2018; 15:4536-4539. [PMID: 28517015 DOI: 10.1039/c7ob00844a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the lowered pKa of 4-fluorohistidine relative to histidine, peptides and proteins containing this amino acid are potentially endowed with novel properties. We report here the optimized synthesis of 4-fluorohistidine and show that it can efficiently replace histidine in in vitro translation reactions. Moreover, peptides containing 6×-fluorohistidine tags are able to be selectively captured and eluted from nickel resin in the presence of his-tagged protein mixtures.
Collapse
Affiliation(s)
- Christine M Ring
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, USA.
| | | | | | | | | |
Collapse
|
3
|
Mamillapalli S, Miyagi M, Bann JG. Stability of domain 4 of the anthrax toxin protective antigen and the effect of the VWA domain of CMG2 on stability. Protein Sci 2016; 26:355-364. [PMID: 27874231 DOI: 10.1002/pro.3087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023]
Abstract
The major immunogenic component of the current anthrax vaccine, anthrax vaccine adsorbed (AVA) is protective antigen (PA). We have shown recently that the thermodynamic stability of PA can be significantly improved by binding to the Von-Willebrand factor A (VWA) domain of capillary morphogenesis protein 2 (CMG2), and improvements in thermodynamic stability may improve storage and long-term stability of PA for use as a vaccine. In order to understand the origin of this increase in stability, we have isolated the receptor binding domain of PA, domain 4 (D4), and have studied the effect of the addition of CMG2 on thermodynamic stability. We are able to determine a binding affinity between D4 and CMG2 (∼300 nM), which is significantly weaker than that between full-length PA and CMG2 (170-300 pM). Unlike full-length PA, we observe very little change in stability of D4 on binding to CMG2, using either fluorescence or 19 F-NMR experiments. Because in previous experiments we could observe a stabilization of both domain 4 and domain 2, the mechanism of stabilization of PA by CMG2 is likely to involve a mutual stabilization of these two domains.
Collapse
Affiliation(s)
| | - Masaru Miyagi
- Case Center for Proteomics and Bioinformatics, Department of Pharmacology and Department of Opthamology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas, 67260
| |
Collapse
|
4
|
Sun J, Jacquez P. Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation. Toxins (Basel) 2016; 8:34. [PMID: 26805886 PMCID: PMC4773787 DOI: 10.3390/toxins8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/04/2022] Open
Abstract
Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA) binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2) plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig)-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Pedro Jacquez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
5
|
Jacquez P, Avila G, Boone K, Altiyev A, Puschhof J, Sauter R, Arigi E, Ruiz B, Peng X, Almeida I, Sherman M, Xiao C, Sun J. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore. PLoS One 2015; 10:e0130832. [PMID: 26107617 PMCID: PMC4479931 DOI: 10.1371/journal.pone.0130832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
Abstract
Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.
Collapse
Affiliation(s)
- Pedro Jacquez
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Gustavo Avila
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Kyle Boone
- Bioinformatics Program of University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Agamyrat Altiyev
- Bioinformatics Program of University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Jens Puschhof
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Roland Sauter
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Emma Arigi
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Blanca Ruiz
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Xiuli Peng
- China National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, P. R. China
| | - Igor Almeida
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Michael Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, 77555, United States of America
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
- * E-mail: (CX); (JS)
| | - Jianjun Sun
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
- * E-mail: (CX); (JS)
| |
Collapse
|
6
|
Mullangi V, Mamillapalli S, Anderson DJ, Bann JG, Miyagi M. Long-range stabilization of anthrax protective antigen upon binding to CMG2. Biochemistry 2014; 53:6084-91. [PMID: 25186975 PMCID: PMC4179592 DOI: 10.1021/bi500718g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Protective antigen (PA) mediates
entry of edema factor (EF) and
lethal factor (LF) into the cytoplasmic space of the cells through
the formation of a membrane-spanning pore. To do this, PA must initially
bind to a host cellular receptor. Recent mass spectrometry analysis
of PA using histidine hydrogen–deuterium exchange (His-HDX)
has shown that binding of the von Willebrand factor A (vWA) domain
of the receptor capillary morphogenesis protein-2 (CMG2) lowers the
exchange rates of the imidazole C2 hydrogen of several
histidines, suggesting that receptor binding decreases the structural
flexibility of PA. Here, using His-HDX and fluorescence as a function
of denaturant, and protease susceptibility, we show that binding of
the vWA domain of CMG2 largely increases the stability of PA and the
effect reaches up to 70 Å from the receptor binding interface.
We also show that the pKa values and HDX
rates of histidines located in separate domains change upon receptor
binding. These results indicate that when one end of the protein is
anchored, the structure of PA is tightened, noncovalent interactions
are strengthened, and the global stability of the protein increases.
These findings suggest that CMG2 may be used to stabilize PA in future
anthrax vaccines.
Collapse
Affiliation(s)
- Vennela Mullangi
- Case Center for Proteomics and Bioinformatics, ‡Department of Pharmacology, and §Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | |
Collapse
|
7
|
Chadegani F, Lovell S, Mullangi V, Miyagi M, Battaile KP, Bann JG. (19)F nuclear magnetic resonance and crystallographic studies of 5-fluorotryptophan-labeled anthrax protective antigen and effects of the receptor on stability. Biochemistry 2014; 53:690-701. [PMID: 24387629 PMCID: PMC3985773 DOI: 10.1021/bi401405s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The anthrax protective antigen (PA)
is an 83 kDa protein that is
one of three protein components of the anthrax toxin, an AB toxin
secreted by Bacillus anthracis. PA is capable of
undergoing several structural changes, including oligomerization to
either a heptameric or octameric structure called the prepore, and
at acidic pH a major conformational change to form a membrane-spanning
pore. To follow these structural changes at a residue-specific level,
we have conducted initial studies in which we have biosynthetically
incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied
the influence of 5-FTrp labeling on the structural stability of PA
and on binding to the host receptor capillary morphogenesis protein
2 (CMG2) using 19F nuclear magnetic resonance (NMR). There
are seven tryptophans in PA, but of the four domains in PA, only two
contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and
domain 2 (Trp346 and -477). Trp346 is of particular interest because
of its proximity to the CMG2 binding interface, and because it forms
part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with
crystallographic studies, and that receptor binding significantly
stabilizes Trp346 to both pH and temperature. In addition, we provide
evidence that suggests that resonances from tryptophans distant from
the binding interface are also stabilized by the receptor. Our studies
highlight the positive impact of receptor binding on protein stability
and the use of 19F NMR in gaining insight into structural
changes in a high-molecular weight protein.
Collapse
Affiliation(s)
- Fatemeh Chadegani
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | | | | | | | | | | |
Collapse
|
8
|
Iyer V, Hu L, Schanté CE, Vance D, Chadwick C, Jain NK, Brey RN, Joshi SB, Volkin DB, Andra KK, Bann JG, Mantis NJ, Middaugh CR. Biophysical characterization and immunization studies of dominant negative inhibitor (DNI), a candidate anthrax toxin subunit vaccine. Hum Vaccin Immunother 2013; 9:2362-70. [PMID: 23925275 DOI: 10.4161/hv.25852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dominant Negative Inhibitor (DNI) is a translocation-deficient homolog of recombinant protective antigen of Bacillus anthracis that is a candidate for a next generation anthrax vaccine. This study demonstrates that the biophysical characteristics of the DNI protein stored in lyophilized form at 4°C for 8 y were similar to recombinant Protective Antigen (rPA). To provide information on the accelerated stability of DNI, samples in the lyophilized form were subjected to thermal stress (40°C and 70°C for up to 4 weeks) and thoroughly evaluated using various biophysical and chemical characterization techniques. Results demonstrate preserved structural stability of the DNI protein under extreme conditions, suggesting long-term stability can be achieved for a vaccine that employs DNI, as desired for a biodefense countermeasure. Furthermore, the biological activity of the stressed DNI bound to the adjuvant Alhydrogel (®) was evaluated in mice and it was found that the immunogenicity DNI was not affected by thermal stress.
Collapse
Affiliation(s)
- Vidyashankara Iyer
- Macromolecule and Vaccine Stabilization Center; Department of Pharmaceutical Chemistry; University of Kansas; Lawrence, KS USA; Bioengineering Graduate Program; University of Kansas; Lawrence, KS USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bann JG. Anthrax toxin protective antigen--insights into molecular switching from prepore to pore. Protein Sci 2012; 21:1-12. [PMID: 22095644 DOI: 10.1002/pro.752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protective antigen is a key component of the anthrax toxin, as it allows entry of the enzymatic components edema factor and lethal factor into the host cell, through the formation of a membrane spanning pore. This event is absolutely critical for the pathogenesis of anthrax, and although we have yet to understand the mechanism of pore formation, recent developments have provided key insights into how this process may occur. Based on the available data, a model is proposed for the kinetic steps for protective antigen conversion from prepore to pore. In this model, the driving force for pore formation is the formation of the phi (ϕ)-clamp, a region that forms a leak-free seal around the translocating polypeptide. Formation of the ϕ-clamp elicits movements within the prepore that provide steric freedom for the subsequent conformational changes required to form the membrane spanning pore.
Collapse
Affiliation(s)
- James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260-0051, USA.
| |
Collapse
|
10
|
Pilpa RM, Bayrhuber M, Marlett JM, Riek R, Young JAT. A receptor-based switch that regulates anthrax toxin pore formation. PLoS Pathog 2011; 7:e1002354. [PMID: 22174672 PMCID: PMC3234216 DOI: 10.1371/journal.ppat.1002354] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/19/2011] [Indexed: 11/19/2022] Open
Abstract
Cellular receptors can act as molecular switches, regulating the sensitivity of microbial proteins to conformational changes that promote cellular entry. The activities of these receptor-based switches are only partially understood. In this paper, we sought to understand the mechanism that underlies the activity of the ANTXR2 anthrax toxin receptor-based switch that binds to domains 2 and 4 of the protective antigen (PA) toxin subunit. Receptor-binding restricts structural changes within the heptameric PA prepore that are required for pore conversion to an acidic endosomal compartment. The transfer cross-saturation (TCS) NMR approach was used to monitor changes in the heptameric PA-receptor contacts at different steps during prepore-to-pore conversion. These studies demonstrated that receptor contact with PA domain 2 is weakened prior to pore conversion, defining a novel intermediate in this pathway. Importantly, ANTXR2 remained bound to PA domain 4 following pore conversion, suggesting that the bound receptor might influence the structure and/or function of the newly formed pore. These studies provide new insights into the function of a receptor-based molecular switch that controls anthrax toxin entry into cells. The bacterium that causes anthrax produces a toxin called anthrax toxin that is largely responsible for causing disease symptoms. The first step in anthrax intoxication involves binding of the toxin to a specific protein, called a receptor, on the cell surface. Receptor-binding acts like a switch to prevent the toxin from forming a pore in a cell membrane until the toxin-receptor complex is taken up into cells and delivered to a specific location (called an endosome) where it is exposed to an “acid bath”. This acidic environment promotes structural changes in the toxin leading to pore formation in the endosomal membrane. In this report, we have studied how the receptor regulates pore formation by following the associated changes in toxin-receptor contacts. These studies have defined a new toxin-receptor intermediate in the pathway leading to pore conversion and demonstrate that the receptor remains bound after pore conversion. Our results provide important new insights into how the receptor regulates anthrax toxin pore formation, information that could be useful for designing new therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Rosemarie M. Pilpa
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Monika Bayrhuber
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - John M. Marlett
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Roland Riek
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
- * E-mail: (JATY); (RR)
| | - John A. T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (JATY); (RR)
| |
Collapse
|
11
|
Wimalasena DS, Janowiak BE, Lovell S, Miyagi M, Sun J, Zhou H, Hajduch J, Pooput C, Kirk KL, Battaile KP, Bann JG. Evidence that histidine protonation of receptor-bound anthrax protective antigen is a trigger for pore formation. Biochemistry 2010; 49:6973-83. [PMID: 20672855 PMCID: PMC2924283 DOI: 10.1021/bi100647z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protective antigen (PA) component of the anthrax toxin forms pores within the low pH environment of host endosomes through mechanisms that are poorly understood. It has been proposed that pore formation is dependent on histidine protonation. In previous work, we biosynthetically incorporated 2-fluorohistidine (2-FHis), an isosteric analogue of histidine with a significantly reduced pK(a) ( approximately 1), into PA and showed that the pH-dependent conversion from the soluble prepore to a pore was unchanged. However, we also observed that 2-FHisPA was nonfunctional in the ability to mediate cytotoxicity of CHO-K1 cells by LF(N)-DTA and was defective in translocation through planar lipid bilayers. Here, we show that the defect in cytotoxicity is due to both a defect in translocation and, when bound to the host cellular receptor, an inability to undergo low pH-induced pore formation. Combining X-ray crystallography with hydrogen-deuterium (H-D) exchange mass spectrometry, our studies lead to a model in which hydrogen bonds to the histidine ring are strengthened by receptor binding. The combination of both fluorination and receptor binding is sufficient to block low pH-induced pore formation.
Collapse
Affiliation(s)
| | - Blythe E. Janowiak
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott Lovell
- Del Shankel Structural Biology Center, The University of Kansas, Lawrence, Kansas 66047
| | - Masaru Miyagi
- Case Center for Proteomics and Bioinformatics, Department of Pharmacology, Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4988
| | - Jianjun Sun
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haiying Zhou
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Jan Hajduch
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Chaya Pooput
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Kenneth L. Kirk
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA
| | - Kevin P. Battaile
- IMCA-CAT, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg 435A, Argonne, IL 60439, USA
| | - James G. Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| |
Collapse
|
12
|
Van Der Goot G, Young JA. Receptors of anthrax toxin and cell entry. Mol Aspects Med 2009; 30:406-12. [PMID: 19732789 PMCID: PMC2783407 DOI: 10.1016/j.mam.2009.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 11/29/2022]
Abstract
Anthrax toxin-receptor interactions are critical for toxin delivery to the host cell cytoplasm. This review summarizes what is known about the molecular details of the protective antigen (PA) toxin subunit interaction with either the ANTXR1 and ANTXR2 cellular receptors, and how receptor-type can dictate the low pH threshold of PA pore formation. The roles played by cellular factors in regulating the endocytosis of toxin-receptor complexes is also discussed.
Collapse
Affiliation(s)
- Gisou Van Der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, SV-AI extension, Station 15, 1015 Lausanne, Switzerland,
| | - John A.T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037,
| |
Collapse
|
13
|
Williams AS, Lovell S, Anbanandam A, El-Chami R, Bann JG. Domain 4 of the anthrax protective antigen maintains structure and binding to the host receptor CMG2 at low pH. Protein Sci 2009; 18:2277-86. [PMID: 19722284 PMCID: PMC2788282 DOI: 10.1002/pro.238] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Domain 4 of the anthrax protective antigen (PA) plays a key role in cellular receptor recognition as well as in pH-dependent pore formation. We present here the 1.95 A crystal structure of domain 4, which adopts a fold that is identical to that observed in the full-length protein. We have also investigated the structural properties of the isolated domain 4 as a function of pH, as well as the pH-dependence on binding to the von Willebrand factor A domain of capillary morphogenesis protein 2 (CMG2). Our results provide evidence that the isolated domain 4 maintains structure and interactions with CMG2 at pH 5, a pH that is known to cause release of the receptor on conversion of the heptameric prepore (PA(63))(7) to a membrane-spanning pore. Our results suggest that receptor release is not driven solely by a pH-induced unfolding of domain 4.
Collapse
Affiliation(s)
| | - Scott Lovell
- Structural Biology Center, The University of KansasLawrence, Kansas 66047
| | - Asokan Anbanandam
- Structural Biology Center, The University of KansasLawrence, Kansas 66047
| | - Rahif El-Chami
- Department of Chemistry, Wichita State UniversityWichita, Kansas 67226
| | - James G Bann
- Department of Chemistry, Wichita State UniversityWichita, Kansas 67226,*Correspondence to: James G. Bann, Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051. E-mail:
| |
Collapse
|