1
|
Teruel N, Borges VM, Najmanovich R. Surfaces: a software to quantify and visualize interactions within and between proteins and ligands. Bioinformatics 2023; 39:btad608. [PMID: 37788107 PMCID: PMC10568369 DOI: 10.1093/bioinformatics/btad608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
SUMMARY Computational methods for the quantification and visualization of the relative contribution of molecular interactions to the stability of biomolecular structures and complexes are fundamental to understand, modulate and engineer biological processes. Here, we present Surfaces, an easy to use, fast and customizable software for quantification and visualization of molecular interactions based on the calculation of surface areas in contact. Surfaces calculations shows equivalent or better correlations with experimental data as computationally expensive methods based on molecular dynamics. AVAILABILITY AND IMPLEMENTATION All scripts are available at https://github.com/NRGLab/Surfaces. Surface's documentation is available at https://surfaces-tutorial.readthedocs.io/en/latest/index.html.
Collapse
Affiliation(s)
- Natália Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
| | - Vinicius Magalhães Borges
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rafael Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
| |
Collapse
|
2
|
Hill LK, Britton D, Jihad T, Punia K, Xie X, Delgado-Fukushima E, Liu CF, Mishkit O, Liu C, Hu C, Meleties M, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK. Engineered Protein-Iron Oxide Hybrid Biomaterial for MRI-traceable Drug Encapsulation. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2022; 7:915-932. [PMID: 37274761 PMCID: PMC10237276 DOI: 10.1039/d2me00002d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Labeled protein-based biomaterials have become a popular for various biomedical applications such as tissue-engineered, therapeutic, or diagnostic scaffolds. Labeling of protein biomaterials, including with ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticles, has enabled a wide variety of imaging techniques. These USPIO-based biomaterials are widely studied in magnetic resonance imaging (MRI), thermotherapy, and magnetically-driven drug delivery which provide a method for direct and non-invasive monitoring of implants or drug delivery agents. Where most developments have been made using polymers or collagen hydrogels, shown here is the use of a rationally designed protein as the building block for a meso-scale fiber. While USPIOs have been chemically conjugated to antibodies, glycoproteins, and tissue-engineered scaffolds for targeting or improved biocompatibility and stability, these constructs have predominantly served as diagnostic agents and often involve harsh conditions for USPIO synthesis. Here, we present an engineered protein-iron oxide hybrid material comprised of an azide-functionalized coiled-coil protein with small molecule binding capacity conjugated via bioorthogonal azide-alkyne cycloaddition to an alkyne-bearing iron oxide templating peptide, CMms6, for USPIO biomineralization under mild conditions. The coiled-coil protein, dubbed Q, has been previously shown to form nanofibers and, upon small molecule binding, further assembles into mesofibers via encapsulation and aggregation. The resulting hybrid material is capable of doxorubicin encapsulation as well as sensitive T2*-weighted MRI darkening for strong imaging capability that is uniquely derived from a coiled-coil protein.
Collapse
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York, 11203, USA
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
| | - Teeba Jihad
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
| | - Xuan Xie
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
| | - Che Fu Liu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
| | - Orin Mishkit
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Chengliang Liu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
| | - Chunhua Hu
- Department of Chemistry, New York University, New York, New York, 10012, USA
| | - Michael Meleties
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
| | - P. Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, 10010, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, 10010, USA
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA
- Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, New York, 10009, USA
| | - Youssef Z. Wadghiri
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York, 10016, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York, 11201, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Chemistry, New York University, New York, New York, 10012, USA
- Department of Biomaterials, New York University College of Dentistry, New York, New York, 10010, USA
| |
Collapse
|
3
|
Ghanem N, Kanagami N, Matsui T, Takeda K, Kaneko J, Shiraishi Y, Choe CA, Uchikubo‐Kamo T, Shirouzu M, Hashimoto T, Ogawa T, Matsuura T, Huang P, Yokoyama T, Tanaka Y. Chimeric mutants of staphylococcal hemolysin, which act as both one‐component and two‐component hemolysin, created by grafting the stem domain. FEBS J 2022; 289:3505-3520. [DOI: 10.1111/febs.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Nouran Ghanem
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Laboratory for Protein Functional and Structural Biology RIKEN Center for Biosystems Dynamics Research Yokohama Japan
| | - Natsuki Kanagami
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Takashi Matsui
- Graduate School of Life Sciences Tohoku University Sendai Japan
- School of Science Kitasato University Sagamihara Japan
| | - Kein Takeda
- Department of Microbial Biotechnology Graduate School of Agricultural Science Tohoku University Sendai Japan
| | - Jun Kaneko
- Department of Microbial Biotechnology Graduate School of Agricultural Science Tohoku University Sendai Japan
| | - Yasuyuki Shiraishi
- Pre‐Clinical Research Center Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | | | - Tomomi Uchikubo‐Kamo
- Laboratory for Protein Functional and Structural Biology RIKEN Center for Biosystems Dynamics Research Yokohama Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology RIKEN Center for Biosystems Dynamics Research Yokohama Japan
| | | | - Tomohisa Ogawa
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Department of Microbial Biotechnology Graduate School of Agricultural Science Tohoku University Sendai Japan
| | - Tomoaki Matsuura
- Department of Biotechnology Graduate School of Engineering Osaka University Suita Japan
| | - Po‐Ssu Huang
- Department of Bioengineering Stanford University CA USA
| | - Takeshi Yokoyama
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Laboratory for Protein Functional and Structural Biology RIKEN Center for Biosystems Dynamics Research Yokohama Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences Tohoku University Sendai Japan
| |
Collapse
|
5
|
Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering. MICROMACHINES 2019; 10:mi10110734. [PMID: 31671786 PMCID: PMC6915371 DOI: 10.3390/mi10110734] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022]
Abstract
Protein engineering—the process of developing useful or valuable proteins—has successfully created a wide range of proteins tailored to specific agricultural, industrial, and biomedical applications. Protein engineering may rely on rational techniques informed by structural models, phylogenic information, or computational methods or it may rely upon random techniques such as chemical mutation, DNA shuffling, error prone polymerase chain reaction (PCR), etc. The increasing capabilities of rational protein design coupled to the rapid production of large variant libraries have seriously challenged the capacity of traditional screening and selection techniques. Similarly, random approaches based on directed evolution, which relies on the Darwinian principles of mutation and selection to steer proteins toward desired traits, also requires the screening of very large libraries of mutants to be truly effective. For either rational or random approaches, the highest possible screening throughput facilitates efficient protein engineering strategies. In the last decade, high-throughput screening (HTS) for protein engineering has been leveraging the emerging technologies of droplet microfluidics. Droplet microfluidics, featuring controlled formation and manipulation of nano- to femtoliter droplets of one fluid phase in another, has presented a new paradigm for screening, providing increased throughput, reduced reagent volume, and scalability. We review here the recent droplet microfluidics-based HTS systems developed for protein engineering, particularly directed evolution. The current review can also serve as a tutorial guide for protein engineers and molecular biologists who need a droplet microfluidics-based HTS system for their specific applications but may not have prior knowledge about microfluidics. In the end, several challenges and opportunities are identified to motivate the continued innovation of microfluidics with implications for protein engineering.
Collapse
|
6
|
Peng F, Cheng X, Wang H, Song S, Chen T, Li X, He Y, Huang Y, Liu S, Yang F, Su Z. Structure-based reconstruction of a Mycobacterium hypothetical protein into an active Δ 5-3-ketosteroid isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:821-830. [PMID: 31226491 DOI: 10.1016/j.bbapap.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Protein engineering based on structure homology holds the potential to engineer steroid-transforming enzymes on demand. Based on the genome sequencing analysis of industrial Mycobacterium strain HGMS2 to produce 4-androstene-3,17-dione (4-AD), three hypothetical proteins were predicted as putative Δ5-3-ketosteroid isomerases (KSIs) to catalyze an intramolecular proton transfer involving the transformation of 5-androstene-3,17-dione (5-AD) into 4-AD, which were defined as mKSI228, mKSI291 and mKSI753. Activity assays indicated that mKSI228 and mKSI291 exhibited weak activity, as low as 0.7% and 1.5%, respectively, of a well-studied and highly active KSI from Pseudomonas putida KSI (pKSI), while mKSI753 had no activity similar to Mycobacterium tuberculosis KSI (mtKSI). Although the 3D structures of the putative mKSIs were homologous to pKSI, their amino acid sequences were significantly different from those of pKSI and tKSI. Thus, by use of these two KSIs as homology models, we were able to convert the low-active mKSI291 into a high-active active KSI by site-directed mutagenesis. On the other hand, an X-ray crystallographic structure of mKSI291 identified a water molecule in its active site. This unique water molecule might function as a bridge to connect Ser-OH, Tyr57-OH and C3O of the intermediate form a hydrogen-bonding network that was responsible for its weak activity, compared with that of mtKSI. Our results not only demonstrated the use of a protein engineering approach to understanding KSI catalytic mechanism, but also provided an example for engineering the catalytic active sites and gaining a functional enzyme based on homologous structures.
Collapse
Affiliation(s)
- Fei Peng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiyao Cheng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Amersino Biodevelop Inc, B1-Building, Biolake Park, Wuhan 430075, China
| | - Hongwei Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shikui Song
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Tian Chen
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yijun He
- Hubei Goto Biotech Inc, No. 1 Baiguoshu Road, Shuidu Industrial Park, Danjiangkou, Hubei 442700, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Amersino Biodevelop Inc, B1-Building, Biolake Park, Wuhan 430075, China.
| |
Collapse
|
8
|
Lyu L, Hu M, Fu A, Xing B. Extracellular Vesicle Directed Exogenous Ion Channel Transport for Precise Manipulation of Biological Events. Bioconjug Chem 2018; 29:2715-2722. [DOI: 10.1021/acs.bioconjchem.8b00377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Linna Lyu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| | - Afu Fu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371
| |
Collapse
|