1
|
Lim B, Xu J, Wierzbicki IH, Gonzalez CG, Chen Z, Gonzalez DJ, Gao X, Goodman AL. A human gut bacterium antagonizes neighboring bacteria by altering their protein-folding ability. Cell Host Microbe 2025:S1931-3128(25)00026-5. [PMID: 39909037 DOI: 10.1016/j.chom.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Antagonistic interactions play a key role in determining microbial community dynamics. Here, we report that one of the most widespread contact-dependent effectors in human gut microbiomes, Bte1, directly targets the PpiD-YfgM periplasmic chaperone complex in related microbes. Structural, biochemical, and genetic characterization of this interaction reveals that Bte1 reverses the activity of the chaperone complex, promoting substrate aggregation and toxicity. Using Bacteroides, we show that Bte1 is active in the mammalian gut, conferring a fitness advantage to expressing strains. Recipient cells targeted by Bte1 exhibit sensitivity to membrane-compromising conditions, and human gut microbes can use this effector to exploit pathogen-induced inflammation in the gut. Further, Bte1 allelic variation in gut metagenomes provides evidence for an arms race between Bte1-encoding and immunity-encoding strains in humans. Together, these studies demonstrate that human gut microbes alter the protein-folding capacity of neighboring cells and suggest strategies for manipulating community dynamics.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jinghua Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Igor H Wierzbicki
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, Center of Microbiome Innovation, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Carlos G Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, Center of Microbiome Innovation, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, Center of Microbiome Innovation, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
2
|
Combs AN, Silhavy TJ. Periplasmic Chaperones: Outer Membrane Biogenesis and Envelope Stress. Annu Rev Microbiol 2024; 78:191-211. [PMID: 39008906 DOI: 10.1146/annurev-micro-041522-102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Envelope biogenesis and homeostasis in gram-negative bacteria are exceptionally intricate processes that require a multitude of periplasmic chaperones to ensure cellular survival. Remarkably, these chaperones perform diverse yet specialized functions entirely in the absence of external energy such as ATP, and as such have evolved sophisticated mechanisms by which their activities are regulated. In this article, we provide an overview of the predominant periplasmic chaperones that enable efficient outer membrane biogenesis and envelope homeostasis in Escherichia coli. We also discuss stress responses that act to combat unfolded protein stress within the cell envelope, highlighting the periplasmic chaperones involved and the mechanisms by which envelope homeostasis is restored.
Collapse
Affiliation(s)
- Ashton N Combs
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
3
|
Miyazaki R, Ai M, Tanaka N, Suzuki T, Dhomae N, Tsukazaki T, Akiyama Y, Mori H. Inner membrane YfgM–PpiD heterodimer acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation. J Biol Chem 2022; 298:102572. [PMID: 36209828 PMCID: PMC9643414 DOI: 10.1016/j.jbc.2022.102572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
PpiD and YfgM are inner membrane proteins that are both composed of an N-terminal transmembrane segment and a C-terminal periplasmic domain. Escherichia coli YfgM and PpiD form a stable complex that interacts with the SecY/E/G (Sec) translocon, a channel that allows protein translocation across the cytoplasmic membrane. Although PpiD is known to function in protein translocation, the functional significance of PpiD–YfgM complex formation as well as the molecular mechanisms of PpiD–YfgM and PpiD/YfgM–Sec translocon interactions remain unclear. Here, we conducted genetic and biochemical studies using yfgM and ppiD mutants and demonstrated that a lack of YfgM caused partial PpiD degradation at its C-terminal region and hindered the membrane translocation of Vibrio protein export monitoring polypeptide (VemP), a Vibrio secretory protein, in both E. coli and Vibrio alginolyticus. While ppiD disruption also impaired VemP translocation, we found that the yfgM and ppiD double deletion exhibited no additive or synergistic effects. Together, these results strongly suggest that both PpiD and YfgM are required for efficient VemP translocation. Furthermore, our site-directed in vivo photocrosslinking analysis revealed that the tetratricopeptide repeat domain of YfgM and a conserved structural domain (NC domain) in PpiD interact with each other and that YfgM, like PpiD, directly interacts with the SecG translocon subunit. Crosslinking analysis also suggested that PpiD–YfgM complex formation is required for these proteins to interact with SecG. In summary, we propose that PpiD and YfgM form a functional unit that stimulates protein translocation by facilitating their proper interactions with the Sec translocon.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mengting Ai
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Natsuko Tanaka
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Naoshi Dhomae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Gao M, Nakajima An D, Skolnick J. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. eLife 2022; 11:82885. [PMID: 36576775 PMCID: PMC9797188 DOI: 10.7554/elife.82885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
To reach their final destinations, outer membrane proteins (OMPs) of gram-negative bacteria undertake an eventful journey beginning in the cytosol. Multiple molecular machines, chaperones, proteases, and other enzymes facilitate the translocation and assembly of OMPs. These helpers usually associate, often transiently, forming large protein assemblies. They are not well understood due to experimental challenges in capturing and characterizing protein-protein interactions (PPIs), especially transient ones. Using AF2Complex, we introduce a high-throughput, deep learning pipeline to identify PPIs within the Escherichia coli cell envelope and apply it to several proteins from an OMP biogenesis pathway. Among the top confident hits obtained from screening ~1500 envelope proteins, we find not only expected interactions but also unexpected ones with profound implications. Subsequently, we predict atomic structures for these protein complexes. These structures, typically of high confidence, explain experimental observations and lead to mechanistic hypotheses for how a chaperone assists a nascent, precursor OMP emerging from a translocon, how another chaperone prevents it from aggregating and docks to a β-barrel assembly port, and how a protease performs quality control. This work presents a general strategy for investigating biological pathways by using structural insights gained from deep learning-based predictions.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Davi Nakajima An
- School of Computer Science, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
5
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Scheuplein NJ, Bzdyl NM, Kibble EA, Lohr T, Holzgrabe U, Sarkar-Tyson M. Targeting Protein Folding: A Novel Approach for the Treatment of Pathogenic Bacteria. J Med Chem 2020; 63:13355-13388. [PMID: 32786507 DOI: 10.1021/acs.jmedchem.0c00911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases are a major cause of morbidity and mortality worldwide, exacerbated by increasing antibiotic resistance in many bacterial species. The development of drugs with new modes of action is essential. A leading strategy is antivirulence, with the aim to target bacterial proteins that are important in disease causation and progression but do not affect growth, resulting in reduced selective pressure for resistance. Immunophilins, a superfamily of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes have been shown to be important for virulence in a broad-spectrum of pathogenic bacteria. This Perspective will provide an overview of the recent advances made in understanding the role of each immunophilin family, cyclophilins, FK506 binding proteins (FKBPs), and parvulins in bacteria. Inhibitor design and medicinal chemistry strategies for development of novel drugs against bacterial FKBPs will be discussed. Furthermore, drugs against human cyclophilins and parvulins will be reviewed in their current indication as antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, 6150 Murdoch, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| |
Collapse
|
7
|
Jauss B, Petriman NA, Drepper F, Franz L, Sachelaru I, Welte T, Steinberg R, Warscheid B, Koch HG. Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in Escherichia coli. J Biol Chem 2019; 294:19167-19183. [PMID: 31699901 DOI: 10.1074/jbc.ra119.010686] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The SecYEG translocon constitutes the major protein transport channel in bacteria and transfers an enormous variety of different secretory and inner-membrane proteins. The minimal core of the SecYEG translocon consists of three inner-membrane proteins, SecY, SecE, and SecG, which, together with appropriate targeting factors, are sufficient for protein transport in vitro However, in vivo the SecYEG translocon has been shown to associate with multiple partner proteins, likely allowing the SecYEG translocon to process its diverse substrates. To obtain a global view on SecYEG plasticity in Escherichia coli, here we performed a quantitative interaction proteomic analysis, which identified several known SecYEG-interacting proteins, verified the interaction of SecYEG with quality-control proteins, and revealed several previously unknown putative SecYEG-interacting proteins. Surprisingly, we found that the chaperone complex PpiD/YfgM is the most prominent interaction partner of SecYEG. Detailed analyses of the PpiD-SecY interaction by site-directed cross-linking revealed that PpiD and the established SecY partner protein YidC use almost completely-overlapping binding sites on SecY. Both PpiD and YidC contacted the lateral gate, the plug domain, and the periplasmic cavity of SecY. However, quantitative MS and cross-linking analyses revealed that despite having almost identical binding sites, their binding to SecY is noncompetitive. This observation suggests that the SecYEG translocon forms different substrate-independent subassemblies in which SecYEG either associates with YidC or with the PpiD/YfgM complex. In summary, the results of this study indicate that the PpiD/YfgM chaperone complex is a primary interaction partner of the SecYEG translocon.
Collapse
Affiliation(s)
- Benjamin Jauss
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lisa Franz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ilie Sachelaru
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thomas Welte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Rehic E, Hoenig D, Kamba BE, Goehring A, Hofmann E, Gasper R, Matena A, Bayer P. Structural Analysis of the 42 kDa Parvulin of Trypanosoma brucei. Biomolecules 2019; 9:biom9030093. [PMID: 30866577 PMCID: PMC6468809 DOI: 10.3390/biom9030093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022] Open
Abstract
Trypanosoma brucei is a unicellular eukaryotic parasite, which causes the African sleeping sickness in humans. The recently discovered trypanosomal protein Parvulin 42 (TbPar42) plays a key role in parasite cell proliferation. Homologues of this two-domain protein are exclusively found in protozoa species. TbPar42 exhibits an N-terminal forkhead associated (FHA)-domain and a peptidyl-prolyl-cis/trans-isomerase (PPIase) domain, both connected by a linker. Using NMR and X-ray analysis as well as activity assays, we report on the structures of the single domains of TbPar42, discuss their intra-molecular interplay, and give some initial hints as to potential cellular functions of the protein.
Collapse
Affiliation(s)
- Edisa Rehic
- University Duisburg-Essen, Research Group Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Dana Hoenig
- University Duisburg-Essen, Research Group Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Bianca E Kamba
- University Duisburg-Essen, Research Group Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Anna Goehring
- University Duisburg-Essen, Research Group Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Raphael Gasper
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany.
- Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany.
| | - Anja Matena
- University Duisburg-Essen, Research Group Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Peter Bayer
- University Duisburg-Essen, Research Group Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
9
|
Abstract
The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.
Collapse
Affiliation(s)
- Frederick Stull
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jean-Michel Betton
- Unité de Repliement et Modélisation des Protéines, Institut Pasteur-CNRS URA2185, 75724 Paris cedex 15, France
| | - James C A Bardwell
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Fürst M, Zhou Y, Merfort J, Müller M. Involvement of PpiD in Sec-dependent protein translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:273-280. [PMID: 29097228 DOI: 10.1016/j.bbamcr.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
The periplasmic space in between the inner and outer membrane of Gram-negative bacteria contains numerous chaperones that are involved in the biogenesis and rescue of extra-cytosolic proteins. In contrast to most of those periplasmic chaperones, PpiD is anchored by an N-terminal transmembrane domain within the inner membrane of Escherichia coli. There it is located in close proximity to the SecY subunit of the SecYEG translocon, which is the primary transporter for secretory and membrane proteins. By site-specific cross-linking we now found the periplasmic domain of PpiD also in close vicinity to the SecG subunit of the Sec translocon and we provide the first direct evidence for a functional cooperation between PpiD and the Sec translocon. Thus we demonstrate that PpiD stimulates in a concentration-dependent manner the translocation of two different secretory proteins into proteoliposomes that had been reconstituted with sub-saturating amounts of SecYEG. In addition we found ribosome-associated nascent chains of a secretory protein stalled at SecY also being in close contact to PpiD. Collectively these results suggest that PpiD plays a role in clearing the Sec translocon of newly translocated secretory proteins thereby improving the overall translocation efficiency. Consistent with this conclusion we demonstrate that PpiD contributes to the efficient detachment of newly secreted OmpA from the inner membrane and in doing so, seems to cooperate in a hierarchical manner with other periplasmic chaperones such as SurA, DegP, and Skp.
Collapse
Affiliation(s)
- Michaela Fürst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, D-79104 Freiburg, Germany
| | - Yufan Zhou
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, D-79104 Freiburg, Germany
| | - Jana Merfort
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany.
| |
Collapse
|
11
|
Skagia A, Vezyri E, Grados K, Venieraki A, Karpusas M, Katinakis P, Dimou M. Structure-Function Analysis of the Periplasmic Escherichia coli Cyclophilin PpiA in Relation to Biofilm Formation. J Mol Microbiol Biotechnol 2017; 27:228-236. [PMID: 28889121 DOI: 10.1159/000478858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
The presence of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8) in all domains of life indicates their biological importance. Cyclophilin PpiA, present in the periplasm of gram-negative bacteria, possesses PPIase activity but its physiological functions are still not clearly defined. Here, we demonstrate that the ΔppiA deletion strain from Escherichia coli exhibits an increased ability for biofilm formation and enhanced swimming motility compared to the wild-type strain. To identify structural features of PpiA which are necessary for the negative modulation of biofilm formation, we constructed a series of mutant PpiA proteins using a combination of error-prone and site-directed mutagenesis approaches. We show that the negative effect of PpiA on biofilm formation is not dependent on its PPIase activity, since PpiA mutants with a reduced PPIase activity are able to complement the ΔppiA strain during biofilm growth.
Collapse
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
12
|
Mamipour M, Yousefi M, Hasanzadeh M. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. Int J Biol Macromol 2017; 102:367-375. [PMID: 28412337 PMCID: PMC7185796 DOI: 10.1016/j.ijbiomac.2017.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation.
Collapse
Affiliation(s)
- Mina Mamipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Taylor AJ, Zakai SAI, Kelly DJ. The Periplasmic Chaperone Network of Campylobacter jejuni: Evidence that SalC (Cj1289) and PpiD (Cj0694) Are Involved in Maintaining Outer Membrane Integrity. Front Microbiol 2017; 8:531. [PMID: 28400767 PMCID: PMC5368265 DOI: 10.3389/fmicb.2017.00531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
Abstract
The outer membrane (OM) of Gram-negative pathogenic bacteria is a key structure in host–pathogen interactions that contains a plethora of proteins, performing a range of functions including adhesion, nutrient uptake, export of effectors and interaction with innate and adaptive components of the immune system. In addition, the OM can exclude drugs and thus contribute to antimicrobial resistance. The OM of the food-borne pathogen Campylobacter jejuni contains porins, adhesins and other virulence factors that must be specifically localized to this membrane, but the protein sorting mechanisms involved are only partially understood. In particular, chaperones are required to ferry OM proteins across the periplasm after they emerge from the Sec translocation system. The SurA-related chaperone PEB4 (Cj0596) is the only protein with a proven role in OM biogenesis and integrity in C. jejuni. In this work, we have constructed a set of isogenic deletion mutants in genes encoding both known and predicted chaperones (cj0596, cj0694, cj1069, cj1228c, and cj1289) using NCTC 11168H as the parental strain. These mutants were characterized using a range of assays to determine effects on growth, agglutination, biofilm formation, membrane permeability and hydrophobicity. We focused on Cj1289 and Cj0694, which our previous work suggested possessed both chaperone and peptidyl-proyl cis/trans isomerase (PPIase) domains. Mutants in either cj1289 or cj0694 showed growth defects, increased motility, agglutination and biofilm formation and severe OM permeability defects as measured by a lysozyme accessibility assay, that were comparable to those exhibited by the isogenic peb4 mutant. 2D-gel comparisons showed a general decrease in OM proteins in these mutants. We heterologously overproduced and purified Cj0694 and obtained evidence that this protein was an active PPIase, as judged by its acceleration of the refolding rate of reduced and alkylated ribonuclease T1 and that it also possessed holdase-type chaperone activity. Cj0694 is most similar to the PpiD class of chaperones but is unusual in possessing PPIase activity. Taken together, our data show that in addition to PEB4, Cj1289 (SalC; SurA-like chaperone) and Cj0694 (PpiD) are also key proteins involved in OM biogenesis and integrity in C. jejuni.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield Sheffield, UK
| | - Shadi A I Zakai
- Faculty of Medicine, King Abdulaziz University Jeddah, Saudi Arabia
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield Sheffield, UK
| |
Collapse
|
14
|
Ikolo F, Zhang M, Harrington DJ, Robinson C, Waller AS, Sutcliffe IC, Black GW. Characterisation of SEQ0694 (PrsA/PrtM) of Streptococcus equi as a functional peptidyl-prolyl isomerase affecting multiple secreted protein substrates. MOLECULAR BIOSYSTEMS 2016; 11:3279-86. [PMID: 26466087 DOI: 10.1039/c5mb00543d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptidyl-prolyl isomerase (PPIase) lipoproteins have been shown to influence the virulence of a number of Gram-positive bacterial human and animal pathogens, most likely through facilitating the folding of cell envelope and secreted virulence factors. Here, we used a proteomic approach to demonstrate that the Streptococcus equi PPIase SEQ0694 alters the production of multiple secreted proteins, including at least two putative virulence factors (FNE and IdeE2). We demonstrate also that, despite some unusual sequence features, recombinant SEQ0694 and its central parvulin domain are functional PPIases. These data add to our knowledge of the mechanisms by which lipoprotein PPIases contribute to the virulence of streptococcal pathogens.
Collapse
Affiliation(s)
- Felicia Ikolo
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK. and Department of Biochemistry, School of Medicine, St. George's University, True Blue, St. George's, Grenada
| | - Meng Zhang
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| | - Dean J Harrington
- Division of Biomedical Science, School of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Carl Robinson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Andrew S Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| | - Gary W Black
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
15
|
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 2016; 1:16107. [PMID: 27573113 DOI: 10.1038/nmicrobiol.2016.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Jozefien De Geyter
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Valentina Zorzini
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
16
|
Hoppstock L, Trusch F, Lederer C, van West P, Koenneke M, Bayer P. NmPin from the marine thaumarchaeote Nitrosopumilus maritimus is an active membrane associated prolyl isomerase. BMC Biol 2016; 14:53. [PMID: 27349962 PMCID: PMC4922055 DOI: 10.1186/s12915-016-0274-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/14/2016] [Indexed: 12/01/2022] Open
Abstract
Background Peptidyl-prolyl isomerases (PPIases) are present in all forms of life and play a crucial role in protein folding and regulation. They catalyze the cis-trans isomerization of the peptide bond that precedes proline residues in numerous proteins. The parvulins, which is one family of PPIases, have been extensively investigated in several eukaryotes. However, nothing is known about their expression, function and localization in archaea. Results Here, we describe the endogenous expression, molecular structure, function and cellular localization of NmPin, a single-domain parvulin-type PPIase from Nitrosopumilus maritimus. This marine chemolithoautotrophic archaeon belongs to the globally abundant phylum Thaumarchaeota. Using high resolution NMR spectroscopy we demonstrate that the 3D structure of NmPin adopts a parvulin fold and confirmed its peptidyl-prolyl isomerase activity by protease-coupled assays and mutagenesis studies. A detailed topological analysis revealed a positively charged lysine-rich patch on the protein surface, which is conserved in all known parvulin sequences of thaumarchaeotes and targets NmPin to lipids in vitro. Immunofluorescence microscopy confirms that the protein is attached to the outer archaeal cell membrane in vivo. Transmission electron microscopy uncovered that NmPin has a uniform distribution at the membrane surface, which is correlated with a native cell shape of the prokaryote. Conclusion We present a novel solution structure of a catalytically active thaumarchaeal parvulin. Our results reveal that a lysine-rich patch in NmPin mediates membrane localization. These findings provide a model whereby NmPin is located between the archaeal membrane and the surface layer and hence suggest proteins of the S-layer as the key target substrates of this parvulin. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0274-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukas Hoppstock
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 1-4, 45141, Essen, Germany
| | - Franziska Trusch
- Aberdeen Oomycetes Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Christoph Lederer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 1-4, 45141, Essen, Germany
| | - Pieter van West
- Aberdeen Oomycetes Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
| | - Martin Koenneke
- Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Str. MARUM, 28359, Bremen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 1-4, 45141, Essen, Germany.
| |
Collapse
|
17
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
18
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
19
|
Schmidpeter PAM, Schmid FX. Prolyl isomerization and its catalysis in protein folding and protein function. J Mol Biol 2015; 427:1609-31. [PMID: 25676311 DOI: 10.1016/j.jmb.2015.01.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Prolyl isomerizations are intrinsically slow processes. They determine the rates of many protein folding reactions and control regulatory events in folded proteins. Prolyl isomerases are able to catalyze these isomerizations, and thus, they have the potential to assist protein folding and to modulate protein function. Here, we provide examples for how prolyl isomerizations limit protein folding and are accelerated by prolyl isomerases and how native-state prolyl isomerizations regulate protein functions. The roles of prolines in protein folding and protein function are closely interrelated because both of them depend on the coupling between cis/trans isomerization and conformational changes that can involve extended regions of a protein.
Collapse
Affiliation(s)
- Philipp A M Schmidpeter
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
20
|
Jakob RP, Koch JR, Burmann BM, Schmidpeter PAM, Hunkeler M, Hiller S, Schmid FX, Maier T. Dimeric Structure of the Bacterial Extracellular Foldase PrsA. J Biol Chem 2014; 290:3278-92. [PMID: 25525259 DOI: 10.1074/jbc.m114.622910] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secretion of proteins into the membrane-cell wall space is essential for cell wall biosynthesis and pathogenicity in Gram-positive bacteria. Folding and maturation of many secreted proteins depend on a single extracellular foldase, the PrsA protein. PrsA is a 30-kDa protein, lipid anchored to the outer leaflet of the cell membrane. The crystal structure of Bacillus subtilis PrsA reveals a central catalytic parvulin-type prolyl isomerase domain, which is inserted into a larger composite NC domain formed by the N- and C-terminal regions. This domain architecture resembles, despite a lack of sequence conservation, both trigger factor, a ribosome-binding bacterial chaperone, and SurA, a periplasmic chaperone in Gram-negative bacteria. Two main structural differences are observed in that the N-terminal arm of PrsA is substantially shortened relative to the trigger factor and SurA and in that PrsA is found to dimerize in a unique fashion via its NC domain. Dimerization leads to a large, bowl-shaped crevice, which might be involved in vivo in protecting substrate proteins from aggregation. NMR experiments reveal a direct, dynamic interaction of both the parvulin and the NC domain with secretion propeptides, which have been implicated in substrate targeting to PrsA.
Collapse
Affiliation(s)
- Roman P Jakob
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Johanna R Koch
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Björn M Burmann
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Philipp A M Schmidpeter
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Moritz Hunkeler
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Sebastian Hiller
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Franz X Schmid
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Timm Maier
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| |
Collapse
|
21
|
Sachelaru I, Petriman NA, Kudva R, Koch HG. Dynamic interaction of the sec translocon with the chaperone PpiD. J Biol Chem 2014; 289:21706-15. [PMID: 24951590 DOI: 10.1074/jbc.m114.577916] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sec translocon constitutes a ubiquitous protein transport channel that consists in bacteria of the three core components: SecY, SecE, and SecG. Additional proteins interact with SecYEG during different stages of protein transport. During targeting, SecYEG interacts with SecA, the SRP receptor, or the ribosome. Protein transport into or across the membrane is then facilitated by the interaction of SecYEG with YidC and the SecDFYajC complex. During protein transport, SecYEG is likely to interact also with the protein quality control machinery, but details about this interaction are missing. By in vivo and in vitro site-directed cross-linking, we show here that the periplasmic chaperone PpiD is located in front of the lateral gate of SecY, through which transmembrane domains exit the SecY channel. The strongest contacts were found to helix 2b of SecY. Blue native PAGE analyses verify the presence of a SecYEG-PpiD complex in native Escherichia coli membranes. The PpiD-SecY interaction was not influenced by the addition of SecA and only weakly influenced by binding of nontranslating ribosomes to SecYEG. In contrast, PpiD lost contact to the lateral gate of SecY during membrane protein insertion. These data identify PpiD as an additional and transient subunit of the bacterial SecYEG translocon. The data furthermore demonstrate the highly modular and versatile composition of the Sec translocon, which is probably essential for its ability to transport a wide range of substrates across membranes in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ilie Sachelaru
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, the Faculty of Biology, and
| | - Narcis-Adrian Petriman
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, the Faculty of Biology, and
| | - Renuka Kudva
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, the Faculty of Biology, and the Spemann-Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- From the Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, the Spemann-Graduate School of Biology and Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Folding mechanisms of periplasmic proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1517-28. [PMID: 24239929 DOI: 10.1016/j.bbamcr.2013.10.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023]
Abstract
More than one fifth of the proteins encoded by the genome of Escherichia coli are destined to the bacterial cell envelope. Over the past 20years, the mechanisms by which envelope proteins reach their three-dimensional structure have been intensively studied, leading to the discovery of an intricate network of periplasmic folding helpers whose members have distinct but complementary roles. For instance, the correct assembly of ß-barrel proteins containing disulfide bonds depends both on chaperones like SurA and Skp for transport across the periplasm and on protein folding catalysts like DsbA and DsbC for disulfide bond formation. In this review, we provide an overview of the current knowledge about the complex network of protein folding helpers present in the periplasm of E. coli and highlight the questions that remain unsolved. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
|
23
|
Grijpstra J, Arenas J, Rutten L, Tommassen J. Autotransporter secretion: varying on a theme. Res Microbiol 2013; 164:562-82. [PMID: 23567321 DOI: 10.1016/j.resmic.2013.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Autotransporters are widely distributed among Gram-negative bacteria. They can have a large variety of functions and many of them have a role in virulence. They are synthesized as large precursors with an N-terminal signal sequence that mediates transport across the inner membrane via the Sec machinery and a translocator domain that mediates the transport of the connected passenger domain across the outer membrane to the bacterial cell surface. Like integral outer membrane proteins, the translocator domain folds in a β-barrel structure and requires the Bam machinery for its insertion into the outer membrane. After transport across the outer membrane, the passenger may stay connected via the translocator domain to the bacterial cell surface or it is proteolytically released into the extracellular milieu. Based on the size of the translocator domain and its position relative to the passenger in the precursor, autotransporters are divided into four sub-categories. We review here the current knowledge of the biogenesis, structure and function of various autotransporters.
Collapse
Affiliation(s)
- Jan Grijpstra
- Section Molecular Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Raffaele S, Perraki A, Mongrand S. The Remorin C-terminal Anchor was shaped by convergent evolution among membrane binding domains. PLANT SIGNALING & BEHAVIOR 2013; 8:e23207. [PMID: 23299327 PMCID: PMC3676492 DOI: 10.4161/psb.23207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
StREM1.3 Remorin is a well-established plant raftophilic protein, predominantly associated with sterol- and sphingolipid-rich membrane rafts. We recently identified a C-terminal domain (RemCA) required and sufficient for StREM1.3 anchoring to the plasma membrane. Here, we report a search for homologs and analogs of RemCA domain in publicly available protein sequence and structure databases. We could not identify RemCA homologous domains outside the Remorin family but we identified domains sharing bias in amino-acid composition and predicted structural fold with RemCA in bacterial, viral and animal proteins. These results suggest that RemCA emerged by convergent evolution among unrelated membrane binding domain.
Collapse
Affiliation(s)
- Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441 INRA-CNRS; Castanet-Tolosan, France
- Correspondence to: Sylvain Raffaele,
| | - Artemis Perraki
- Laboratoire de Biogenese Membraniare; UMR 5200 CNRS; Université Bordeaux Segalen; INRA Bordeaux Aquitaine BP81; Villenave d'Ornon Cédex, France
| | - Sébastien Mongrand
- Laboratoire de Biogenese Membraniare; UMR 5200 CNRS; Université Bordeaux Segalen; INRA Bordeaux Aquitaine BP81; Villenave d'Ornon Cédex, France
| |
Collapse
|
25
|
Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M. Protein quality control in the bacterial periplasm. Annu Rev Microbiol 2012; 65:149-68. [PMID: 21639788 DOI: 10.1146/annurev-micro-090110-102925] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Melisa Merdanovic
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117 Essen, Germany.
| | | | | | | | | |
Collapse
|
26
|
Mueller JW, Link NM, Matena A, Hoppstock L, Rüppel A, Bayer P, Blankenfeldt W. Crystallographic Proof for an Extended Hydrogen-Bonding Network in Small Prolyl Isomerases. J Am Chem Soc 2011; 133:20096-9. [DOI: 10.1021/ja2086195] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan W. Mueller
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Nina M. Link
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Anja Matena
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Lukas Hoppstock
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Alma Rüppel
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Peter Bayer
- Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Wulf Blankenfeldt
- University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
27
|
Varying dependency of periplasmic peptidylprolyl cis–trans isomerases in promoting Yersinia pseudotuberculosis stress tolerance and pathogenicity. Biochem J 2011; 439:321-32. [DOI: 10.1042/bj20110767] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Periplasmic PPIases (peptidylprolyl cis–trans isomerases) catalyse the cis–trans isomerization of peptidyl-prolyl bonds, which is a rate-limiting step during protein folding. We demonstrate that the surA, ppiA, ppiD, fkpA and fklB alleles each encode a periplasmic PPIase in the bacterial pathogen Yersinia pseudotuberculosis. Of these, four were purified to homogeneity. Purified SurA, FkpA and FklB, but not PpiD, displayed detectable PPIase activity in vitro. Significantly, only Y. pseudotuberculosis lacking surA caused drastic alterations to the outer membrane protein profile and FA (fatty acid) composition. They also exhibited aberrant cellular morphology, leaking LPS (lipopolysaccharide) into the extracellular environment. The SurA PPIase is therefore most critical for maintaining Y. pseudotuberculosis envelope integrity during routine culturing. On the other hand, bacteria lacking either surA or all of the genes ppiA, ppiD, fkpA and fklB were sensitive to hydrogen peroxide and were attenuated in mice infections. Thus Y. pseudotuberculosis exhibits both SurA-dependent and -independent requirements for periplasmic PPIase activity to ensure in vivo survival and a full virulence effect in a mammalian host.
Collapse
|
28
|
Ricci DP, Silhavy TJ. The Bam machine: a molecular cooper. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1067-84. [PMID: 21893027 DOI: 10.1016/j.bbamem.2011.08.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 11/24/2022]
Abstract
The bacterial outer membrane (OM) is an exceptional biological structure with a unique composition that contributes significantly to the resiliency of Gram-negative bacteria. Since all OM components are synthesized in the cytosol, the cell must efficiently transport OM-specific lipids and proteins across the cell envelope and stably integrate them into a growing membrane. In this review, we discuss the challenges associated with these processes and detail the elegant solutions that cells have evolved to address the topological problem of OM biogenesis. Special attention will be paid to the Bam machine, a highly conserved multiprotein complex that facilitates OM β-barrel folding. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
29
|
Kale A, Phansopa C, Suwannachart C, Craven CJ, Rafferty JB, Kelly DJ. The virulence factor PEB4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni. J Biol Chem 2011; 286:21254-65. [PMID: 21524997 PMCID: PMC3122185 DOI: 10.1074/jbc.m111.220442] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/08/2011] [Indexed: 11/06/2022] Open
Abstract
The PEB4 protein is an antigenic virulence factor implicated in host cell adhesion, invasion, and colonization in the food-borne pathogen Campylobacter jejuni. peb4 mutants have defects in outer membrane protein assembly and PEB4 is thought to act as a periplasmic chaperone. The crystallographic structure of PEB4 at 2.2-Å resolution reveals a dimer with distinct SurA-like chaperone and peptidyl-prolyl cis/trans isomerase (PPIase) domains encasing a large central cavity. Unlike SurA, the chaperone domain is formed by interlocking helices from each monomer, creating a domain-swapped architecture. PEB4 stimulated the rate of proline isomerization limited refolding of denatured RNase T(1) in a juglone-sensitive manner, consistent with parvulin-like PPIase domains. Refolding and aggregation of denatured rhodanese was significantly retarded in the presence of PEB4 or of an engineered variant specifically lacking the PPIase domain, suggesting the chaperone domain possesses a holdase activity. Using bioinformatics approaches, we identified two other SurA-like proteins (Cj1289 and Cj0694) in C. jejuni. The 2.3-Å structure of Cj1289 does not have the domain-swapped architecture of PEB4 and thus more resembles SurA. Purified Cj1289 also enhanced RNase T(1) refolding, although poorly compared with PEB4, but did not retard the refolding of denatured rhodanese. Structurally, Cj1289 is the most similar protein to SurA in C. jejuni, whereas PEB4 has most structural similarity to the Par27 protein of Bordetella pertussis. Our analysis predicts that Cj0694 is equivalent to the membrane-anchored chaperone PpiD. These results provide the first structural insights into the periplasmic assembly of outer membrane proteins in C. jejuni.
Collapse
Affiliation(s)
- Avinash Kale
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Chatchawal Phansopa
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Chatrudee Suwannachart
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - C. Jeremy Craven
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - John B. Rafferty
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - David J. Kelly
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
30
|
Alonzo F, Xayarath B, Whisstock JC, Freitag NE. Functional analysis of the Listeria monocytogenes secretion chaperone PrsA2 and its multiple contributions to bacterial virulence. Mol Microbiol 2011; 80:1530-48. [PMID: 21545417 DOI: 10.1111/j.1365-2958.2011.07665.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As an organism that has evolved to live in environments ranging from soil to the cytosol of mammalian cells, Listeria monocytogenes must regulate the secretion and activity of protein products that promote survival within these habitats. The post-translocation chaperone PrsA2 has been adapted to assist in the folding and activity of L. monocytogenes secreted proteins required for bacterial replication within host cells. Here we present the first structure/function investigation of the contributions of PrsA2 to protein secretion and activity as well as to bacterial virulence. Domain swap experiments with the closely related L. monocytogenes PrsA1 protein combined with targeted mutagenesis indicate distinct functional roles for the PrsA2 peptidyl-prolyl isomerase (PPIase) and the N- and C-terminal domains in pathogenesis. In contrast to other PrsA-like proteins described thus far in the literature, an absolute in vivo requirement for PrsA2 PPIase activity is evident in mouse infection models. This work illustrates the diversity of function associated with L. monocytogenes PrsA2 that serves to promote bacterial life within the infected host.
Collapse
Affiliation(s)
- Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
31
|
Giuseppe PO, Von Atzingen M, Nascimento ALTO, Zanchin NIT, Guimarães BG. The crystal structure of the leptospiral hypothetical protein LIC12922 reveals homology with the periplasmic chaperone SurA. J Struct Biol 2010; 173:312-22. [PMID: 20970503 DOI: 10.1016/j.jsb.2010.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 12/22/2022]
Abstract
Leptospirosis is a world spread zoonosis caused by members of the genus Leptospira. Although leptospires were identified as the causal agent of leptospirosis almost 100 years ago, little is known about their biology, which hinders the development of new treatment and prevention strategies. One of the several aspects of the leptospiral biology not yet elucidated is the process by which outer membrane proteins (OMPs) traverse the periplasm and are inserted into the outer membrane. The crystal structure determination of the conserved hypothetical protein LIC12922 from Leptospira interrogans revealed a two domain protein homologous to the Escherichia coli periplasmic chaperone SurA. The LIC12922 NC-domain is structurally related to the chaperone modules of E. coli SurA and trigger factor, whereas the parvulin domain is devoid of peptidyl prolyl cis-trans isomerase activity. Phylogenetic analyses suggest a relationship between LIC12922 and the chaperones PrsA, PpiD and SurA. Based on our structural and evolutionary analyses, we postulate that LIC12922 is a periplasmic chaperone involved in OMPs biogenesis in Leptospira spp. Since LIC12922 homologs were identified in all spirochetal genomes sequenced to date, this assumption may have implications for the OMPs biogenesis studies not only in leptospires but in the entire Phylum Spirochaetes.
Collapse
Affiliation(s)
- Priscila O Giuseppe
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center of Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
32
|
Matern Y, Barion B, Behrens-Kneip S. PpiD is a player in the network of periplasmic chaperones in Escherichia coli. BMC Microbiol 2010; 10:251. [PMID: 20920237 PMCID: PMC2956729 DOI: 10.1186/1471-2180-10-251] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The inner membrane-anchored periplasmic folding factor PpiD is described as a parvulin-like peptidyl prolyl isomerase (PPIase) that assists in the maturation of the major beta-barrel outer membrane proteins (OMPs) of Escherichia coli. More recent work however, calls these findings into question. Here, we re-examined the role of PpiD in the E. coli periplasm by analyzing its functional interplay with other folding factors that influence OMP maturation as well as general protein folding in the periplasmic compartment of the cell, such as SurA, Skp, and DegP. RESULTS The analysis of the effects of both deletion and overexpression of ppiD on cell envelope phenotypes revealed that PpiD in contrast to prior observations plays only a minor role, if any, in the maturation of OMPs and cannot compensate for the lack of SurA in the periplasm. On the other hand, our results show that overproduction of PpiD rescues a surA skp double mutant from lethality. In the presence of increased PpiD levels surA skp cells show reduced activities of both the SigmaE-dependent and the Cpx envelope stress responses, and contain increased amounts of folded species of the major OMP OmpA. These effects require the anchoring of PpiD in the inner membrane but are independent of its parvulin-like PPIase domain. Moreover, a PpiD protein lacking the PPIase domain also complements the growth defects of an fkpA ppiD surA triple PPIase mutant and exhibits chaperone activity in vitro. In addition, PpiD appears to collaborate with DegP, as deletion of ppiD confers a temperature-dependent conditional synthetic phenotype in a degP mutant. CONCLUSIONS This study provides first direct evidence that PpiD functions as a chaperone and contributes to the network of periplasmic chaperone activities without being specifically involved in OMP maturation. Consistent with previous work, our data support a model in which the chaperone function of PpiD is used to aid in the early periplasmic folding of many newly translocated proteins.
Collapse
Affiliation(s)
- Yvonne Matern
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr, 8, D-37077 Göttingen, Germany
| | | | | |
Collapse
|