1
|
Fushai F, Chitura T, Oke OE. Climate-smart livestock nutrition in semi-arid Southern African agricultural systems. Front Vet Sci 2025; 12:1507152. [PMID: 40007753 PMCID: PMC11851964 DOI: 10.3389/fvets.2025.1507152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Climate change is disrupting the semi-arid agricultural systems in Southern Africa, where livestock is crucial to food security and livelihoods. This review evaluates the bioenergetic and agroecological scope for climate-adaptive livestock nutrition in the region. An analysis of the literature on climate change implications on livestock nutrition and thermal welfare in the regional agroecological context was conducted. The information gathered was systematically synthesized into tabular summaries of the fundamentals of climate-smart bioenergetics, thermoregulation, livestock heat stress defence mechanisms, the thermo-bioactive feed components, and potentially climate-smart feed resources in the region. The analysis supports the adoption of climate-smart livestock nutrition when conceptualized as precision feeding combined with dietary strategies that enhance thermal resilience in livestock, and the adaptation of production systems to the decline in availability of conventional feedstuffs by incorporating climate-smart alternatives. The keystone potential climate-smart alternative feedstuffs are identified to be the small cereal grains, such as sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) as dietary energy sources, the native legumes, such as the cowpea (Vigna unguiculata) and the marama bean (Tylosema esculentum) as protein sources, wild browse Fabaceae trees such as Vachellia spp. and Colophospermum mopane, which provide dry season and drought supplementary protein, minerals, and antioxidants, the non-fabaceous tree species such as the marula tree (Sclerocarya birrea), from which animals consume the energy and electrolyte-rich fresh fruit or processed pulp. Feedstuffs for potential circular feeding systems include the oilseed cakes from the macadamia (Macadamia integrifolia) nut, the castor (Ricinus communis), and Jatropha (Jatropha curcas) beans, which are rich in protein and energy, insect feed protein and energy, primarily the black soldier fly larvae (Hermetia illucens), and microbial protein from phototrophic algae (Spirulina, Chlorella), and yeasts (Saccharomyces cerevisiae). Additives for thermo-functionally enhanced diets include synthetic and natural anti-oxidants, phytogenics, biotic agents (prebiotics, probiotics, synbiotics, postbiotics), and electrolytes. The review presents a conceptual framework for climate-smart feeding strategies that enhance system resilience across the livestock-energy-water-food nexus, to inform broader, in-depth research, promote climate-smart farm practices and support governmental policies which are tailored to the agroecology of the region.
Collapse
Affiliation(s)
- Felix Fushai
- Department of Animal Science, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Teedzai Chitura
- Department of Animal Science, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
2
|
Riedl S, Bilgen E, Agam G, Hirvonen V, Jussupow A, Tippl F, Riedl M, Maier A, Becker CFW, Kaila VRI, Lamb DC, Buchner J. Evolution of the conformational dynamics of the molecular chaperone Hsp90. Nat Commun 2024; 15:8627. [PMID: 39366960 PMCID: PMC11452706 DOI: 10.1038/s41467-024-52995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Hsp90 is a molecular chaperone of central importance for protein homeostasis in the cytosol of eukaryotic cells, with key functional and structural traits conserved from yeast to man. During evolution, Hsp90 has gained additional functional importance, leading to an increased number of interacting co-chaperones and client proteins. Here, we show that the overall conformational transitions coupled to the ATPase cycle of Hsp90 are conserved from yeast to humans, but cycle timing as well as the dynamics are significantly altered. In contrast to yeast Hsp90, the human Hsp90 is characterized by broad ensembles of conformational states, irrespective of the absence or presence of ATP. The differences in the ATPase rate and conformational transitions between yeast and human Hsp90 are based on two residues in otherwise conserved structural elements that are involved in triggering structural changes in response to ATP binding. The exchange of these two mutations allows swapping of the ATPase rate and of the conformational transitions between human and yeast Hsp90. Our combined results show that Hsp90 evolved to a protein with increased conformational dynamics that populates ensembles of different states with strong preferences for the N-terminally open, client-accepting states.
Collapse
Affiliation(s)
- Stefan Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Ecenaz Bilgen
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ganesh Agam
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Viivi Hirvonen
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Alexander Jussupow
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Franziska Tippl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Andreas Maier
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Don C Lamb
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany.
| |
Collapse
|
3
|
Willingham BD, Ragland TJ, Ormsbee MJ. Betaine Supplementation May Improve Heat Tolerance: Potential Mechanisms in Humans. Nutrients 2020; 12:nu12102939. [PMID: 32992781 PMCID: PMC7599524 DOI: 10.3390/nu12102939] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
Betaine has been demonstrated to increase tolerance to hypertonic and thermal stressors. At the cellular level, intracellular betaine functions similar to molecular chaperones, thereby reducing the need for inducible heat shock protein expression. In addition to stabilizing protein conformations, betaine has been demonstrated to reduce oxidative damage. For the enterocyte, during periods of reduced perfusion as well as greater oxidative, thermal, and hypertonic stress (i.e., prolonged exercise in hot-humid conditions), betaine results in greater villi length and evidence for greater membrane integrity. Collectively, this reduces exercise-induced gut permeability, protecting against bacterial translocation and endotoxemia. At the systemic level, chronic betaine intake has been shown to reduce core temperature, all-cause mortality, markers of inflammation, and change blood chemistry in several animal models when exposed to heat stress. Despite convincing research in cell culture and animal models, only one published study exists exploring betaine's thermoregulatory function in humans. If the same premise holds true for humans, chronic betaine consumption may increase heat tolerance and provide another avenue of supplementation for those who find that heat stress is a major factor in their work, or training for exercise and sport. Yet, this remains speculative until data demonstrate such effects in humans.
Collapse
Affiliation(s)
- Brandon D. Willingham
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
| | - Tristan J. Ragland
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
| | - Michael J. Ormsbee
- Institute of Sports Sciences and Medicine, Department of Nutrition, Food, and Exercise Science, Florida State University, Tallahassee, FL 32306, USA; (B.D.W.); (T.J.R.)
- Department of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
- Correspondence:
| |
Collapse
|
4
|
Illuminating the catalytic core of ectoine synthase through structural and biochemical analysis. Sci Rep 2019; 9:364. [PMID: 30674920 PMCID: PMC6344544 DOI: 10.1038/s41598-018-36247-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022] Open
Abstract
Ectoine synthase (EctC) is the signature enzyme for the production of ectoine, a compatible solute and chemical chaperone widely synthesized by bacteria as a cellular defense against the detrimental effects of osmotic stress. EctC catalyzes the last step in ectoine synthesis through cyclo-condensation of the EctA-formed substrate N-gamma-acetyl-L-2,4-diaminobutyric acid via a water elimination reaction. We have biochemically and structurally characterized the EctC enzyme from the thermo-tolerant bacterium Paenibacillus lautus (Pl). EctC is a member of the cupin superfamily and forms dimers, both in solution and in crystals. We obtained high-resolution crystal structures of the (Pl)EctC protein in forms that contain (i) the catalytically important iron, (ii) iron and the substrate N-gamma-acetyl-L-2,4-diaminobutyric acid, and (iii) iron and the enzyme reaction product ectoine. These crystal structures lay the framework for a proposal for the EctC-mediated water-elimination reaction mechanism. Residues involved in coordinating the metal, the substrate, or the product within the active site of ectoine synthase are highly conserved among a large group of EctC-type proteins. Collectively, the biochemical, mutational, and structural data reported here yielded detailed insight into the structure-function relationship of the (Pl)EctC enzyme and are relevant for a deeper understanding of the ectoine synthase family as a whole.
Collapse
|
5
|
Stiers KM, Beamer LJ. A Hotspot for Disease-Associated Variants of Human PGM1 Is Associated with Impaired Ligand Binding and Loop Dynamics. Structure 2018; 26:1337-1345.e3. [PMID: 30122451 DOI: 10.1016/j.str.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 07/21/2018] [Indexed: 12/20/2022]
Abstract
Human phosphoglucomutase 1 (PGM1) plays a central role in cellular glucose homeostasis, catalyzing the conversion of glucose 1-phosphate and glucose 6-phosphate. Recently, missense variants of this enzyme were identified as causing an inborn error of metabolism, PGM1 deficiency, with features of a glycogen storage disease and a congenital disorder of glycosylation. Previous studies of selected PGM1 variants have revealed various mechanisms for enzyme dysfunction, including regions of structural disorder and side-chain rearrangements within the active site. Here, we examine variants within a substrate-binding loop in domain 4 (D4) of PGM1 that cause extreme impairment of activity. Biochemical, structural, and computational studies demonstrate multiple detrimental impacts resulting from these variants, including loss of conserved ligand-binding interactions and reduced mobility of the D4 loop, due to perturbation of its conformational ensemble. These potentially synergistic effects make this conserved ligand-binding loop a hotspot for disease-related variants in PGM1 and related enzymes.
Collapse
Affiliation(s)
- Kyle M Stiers
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Lesa J Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Tinkering with Osmotically Controlled Transcription Allows Enhanced Production and Excretion of Ectoine and Hydroxyectoine from a Microbial Cell Factory. Appl Environ Microbiol 2018; 84:AEM.01772-17. [PMID: 29101191 DOI: 10.1128/aem.01772-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
Ectoine and hydroxyectoine are widely synthesized by members of the Bacteria and a few members of the Archaea as potent osmostress protectants. We have studied the salient features of the osmostress-responsive promoter directing the transcription of the ectoine/hydroxyectoine biosynthetic gene cluster from the plant-root-associated bacterium Pseudomonas stutzeri by transferring it into Escherichia coli, an enterobacterium that does not produce ectoines naturally. Using ect-lacZ reporter fusions, we found that the heterologous ect promoter reacted with exquisite sensitivity in its transcriptional profile to graded increases in sustained high salinity, responded to a true osmotic signal, and required the buildup of an osmotically effective gradient across the cytoplasmic membrane for its induction. The involvement of the -10, -35, and spacer regions of the sigma-70-type ect promoter in setting promoter strength and response to osmotic stress was assessed through site-directed mutagenesis. Moderate changes in the ect promoter sequence that increase its resemblance to housekeeping sigma-70-type promoters of E. coli afforded substantially enhanced expression, both in the absence and in the presence of osmotic stress. Building on this set of ect promoter mutants, we engineered an E. coli chassis strain for the heterologous production of ectoines. This synthetic cell factory lacks the genes for the osmostress-responsive synthesis of trehalose and the compatible solute importers ProP and ProU, and it continuously excretes ectoines into the growth medium. By combining appropriate host strains and different plasmid variants, excretion of ectoine, hydroxyectoine, or a mixture of both compounds was achieved under mild osmotic stress conditions.IMPORTANCE Ectoines are compatible solutes, organic osmolytes that are used by microorganisms to fend off the negative consequences of high environmental osmolarity on cellular physiology. An understanding of the salient features of osmostress-responsive promoters directing the expression of the ectoine/hydroxyectoine biosynthetic gene clusters is lacking. We exploited the ect promoter from an ectoine/hydroxyectoine-producing soil bacterium for such a study by transferring it into a surrogate bacterial host. Despite the fact that E. coli does not synthesize ectoines naturally, the ect promoter retained its exquisitely sensitive osmotic control, indicating that osmoregulation of ect transcription is an inherent feature of the promoter and its flanking sequences. These sequences were narrowed to a 116-bp DNA fragment. Ectoines have interesting commercial applications. Building on data from a site-directed mutagenesis study of the ect promoter, we designed a synthetic cell factory that secretes ectoine, hydroxyectoine, or a mixture of both compounds into the growth medium.
Collapse
|
7
|
Czemeres J, Buse K, Verkhivker GM. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. PLoS One 2017; 12:e0190267. [PMID: 29267381 PMCID: PMC5739471 DOI: 10.1371/journal.pone.0190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding.
Collapse
Affiliation(s)
- Josh Czemeres
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Kurt Buse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Fonin AV, Golikova AD, Zvereva IA, D'Auria S, Staiano M, Uversky VN, Kuznetsova IM, Turoverov KK. Osmolyte-Like Stabilizing Effects of Low GdnHCl Concentrations on d-Glucose/d-Galactose-Binding Protein. Int J Mol Sci 2017; 18:E2008. [PMID: 28925982 PMCID: PMC5618657 DOI: 10.3390/ijms18092008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 11/16/2022] Open
Abstract
The ability of d-glucose/d-galactose-binding protein (GGBP) to reversibly interact with its ligands, glucose and galactose, makes this protein an attractive candidate for sensing elements of glucose biosensors. This potential is largely responsible for attracting researchers to study the conformational properties of this protein. Previously, we showed that an increase in the fluorescence intensity of the fluorescent dye 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN) is linked to the holo-form of the GGBP/H152C mutant in solutions containing sub-denaturing concentrations of guanidine hydrochloride (GdnHCl). It was hypothesized that low GdnHCl concentrations might lead to compaction of the protein, thereby facilitating ligand binding. In this work, we utilize BADAN fluorescence spectroscopy, intrinsic protein UV fluorescence spectroscopy, and isothermal titration calorimetry (ITC) to show that the sub-denaturing GdnHCl concentrations possess osmolyte-like stabilizing effects on the structural dynamics, conformational stability, and functional activity of GGBP/H152C and the wild type of this protein (wtGGBP). Our data are consistent with the model where low GdnHCl concentrations promote a shift in the dynamic distribution of the protein molecules toward a conformational ensemble enriched in molecules with a tighter structure and a more closed conformation. This promotes the increase in the configurational complementarity between the protein and glucose molecules that leads to the increase in glucose affinity in both GGBP/H152C and wtGGBP.
Collapse
Affiliation(s)
- Alexander V Fonin
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Alexandra D Golikova
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Irina A Zvereva
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Sabato D'Auria
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Maria Staiano
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Irina M Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, 195251 St. Petersburg, Russia.
| |
Collapse
|
9
|
Liu P, Yu S, Cui Y, He J, Yu C, Wen Z, Pan Y, Yang K, Song L, Yang X. Cloning of HSP90, expression and localization of HSP70/90 in different tissues including lactating/non-lactating yak (Bos grunniens) breast tissue. PLoS One 2017; 12:e0179321. [PMID: 28715410 PMCID: PMC5513418 DOI: 10.1371/journal.pone.0179321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of this study is to investigate the expression and localization of HSP70/90 in different tissues and explore the regulation effects of HSP70/90 at lactation period of female yaks. HSP90 mRNA was cloned from the heart samples of female yaks, Quantitative real-time (qRT-PCR), Western blotting (WB), immunohistochemistry and immunofluorescence assays were utilized to analyze the expressions of HSP70/90 mRNA and protein in different tissues. Sequence analysis showed that HSP90 is a conserved molecular chaperone of female yaks. The qRT-PCR, WB results showed that the expressions of HSP70/90 mRNA and protein were significantly different in different tissues, and 3-fold higher expression during the lactation period than the non-lactation period of breast tissue (P < 0.01). Immunohistochemistry and immunofluorescence assays results showed that HSP70/90 were located in the cardiac muscle cells, cerebellar medulla, theca cells lining at the reproductive system, and the mammary epithelia of the breasts. In addition, the expression level of HSP70 was higher than those of HSP90 in all examined tissues. Therefore, our results strongly suggest that the expression and localization of HSP70/90 could provide significant evidence to further research in tissue specific expression, and lactation function of female yaks.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Junfeng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chuan Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zexing Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Kun Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liangli Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Restored mutant receptor:Corticoid binding in chaperone complexes by trimethylamine N-oxide. PLoS One 2017; 12:e0174183. [PMID: 28301576 PMCID: PMC5354453 DOI: 10.1371/journal.pone.0174183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/03/2017] [Indexed: 02/01/2023] Open
Abstract
Without a glucocorticoid (GC) ligand, the transcription factor glucocorticoid receptor (GR) is largely cytoplasmic, with its GC-binding domain held in high affinity conformation by a cluster of chaperones. Binding a GC causes serial dis- and re-associations with chaperones, translocation of the GR to the nucleus, where it binds to DNA sites and associates with coregulatory proteins and basic transcription complexes. Herein, we describe the effects of a potent protective osmolyte, trimethylamine N-oxide (TMAO), on a conditions-dependent “activation-labile” mutant GR (GRact/l), which under GR-activating conditions cannot bind GCs in cells or in cell cytosols. In both cells and cytosols, TMAO restores binding to GRact/l by stabilizing it in complex with chaperones. Cells bathed in much lower concentrations of TMAO than those required in vitro show restoration of GC binding, presumably due to intracellular molecular crowding effects.
Collapse
|
11
|
Mohammadi A, Najar AG, Yaghoobi MM, Jahani Y, Vahabzadeh Z. Trimethylamine-N-Oxide Treatment Induces Changes in the ATP-Binding Cassette Transporter A1 and Scavenger Receptor A1 in Murine Macrophage J774A.1 cells. Inflammation 2016; 39:393-404. [PMID: 26412259 DOI: 10.1007/s10753-015-0261-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recently, trimethylamine N-oxide was introduced as a risk factor for atherosclerosis in terms of helping foam cell formation and worsening atherosclerosis complications. The present study was performed to investigate whether/how trimethylamine N-oxide is involved in regulation of ATP-binding cassette transporter A1 and scavenger receptor A1 in macrophages at both mRNA and protein levels. METHODS Murine macrophage J774A.1 cells were treated with micromolar concentrations of trimethylamine N-oxide and 4-phenylbutyric acid, a chemical chaperon, for different time intervals. Tunicamycin was also used as a control for induction of endoplasmic reticulum stress. RESULTS Similar to tunicamycin, trimethylamine N-oxide increased scavenger receptor A1 in all treatment periods, whereas ATP-binding cassette transporter A1 was only reduced 24 h post-treatment with trimethylamine N-oxide at both mRNA and protein levels. In contrast, 4-phenylbutyric acid failed to induce such changes in either scavenger receptor A1 or ATP-binding cassette transporter A1. CONCLUSIONS The results of this study, in agreement with previous studies, confirm the mechanistic role of trimethylamine N-oxide in the upregulation of scavenger receptor A1, which potentially can promote its proatherogenic role. The results also showed downregulation of ATP-binding cassette transporter A1 in trimethylamine N-oxide treated macrophages which may indicate another possible proatherosclerotic mechanism for foam cell formation.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Endocrine and Metabolism Research Center, Institute of Basic and Clinical Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Gholamhoseynian Najar
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mehdi Yaghoobi
- Research Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Yunes Jahani
- Social Determinants of Health Research Center, Institute of Futures Studies in Health, Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Zakaria Vahabzadeh
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Czech L, Stöveken N, Bremer E. EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Microb Cell Fact 2016; 15:126. [PMID: 27439307 PMCID: PMC4955205 DOI: 10.1186/s12934-016-0525-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022] Open
Abstract
Background Ectoine and its derivative 5-hydroxyectoine are cytoprotectants widely synthesized by microorganisms as a defense against the detrimental effects of high osmolarity on cellular physiology and growth. Both ectoines possess the ability to preserve the functionality of proteins, macromolecular complexes, and even entire cells, attributes that led to their description as chemical chaperones. As a consequence, there is growing interest in using ectoines for biotechnological purposes, in skin care, and in medical applications. 5-Hydroxyectoine is synthesized from ectoine through a region- and stereo-specific hydroxylation reaction mediated by the EctD enzyme, a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenases. This chemical modification endows the newly formed 5-hydroxyectoine with either superior or different stress- protecting and stabilizing properties. Microorganisms producing 5-hydroxyectoine typically contain a mixture of both ectoines. We aimed to establish a recombinant microbial cell factory where 5-hydroxyectoine is (i) produced in highly purified form, and (ii) secreted into the growth medium. Results We used an Escherichia coli strain (FF4169) defective in the synthesis of the osmostress protectant trehalose as the chassis for our recombinant cell factory. We expressed in this strain a plasmid-encoded ectD gene from Pseudomonas stutzeri A1501 under the control of the anhydrotetracycline-inducible tet promoter. We chose the ectoine hydroxylase from P. stutzeri A1501 for our cell factory after a careful comparison of the in vivo performance of seven different EctD proteins. In the final set-up of the cell factory, ectoine was provided to salt-stressed cultures of strain FF4169 (pMP41; ectD+). Ectoine was imported into the cells via the osmotically inducible ProP and ProU transport systems, intracellularly converted to 5-hydroxyectoine, which was then almost quantitatively secreted into the growth medium. Experiments with an E. coli mutant lacking all currently known mechanosensitive channels (MscL, MscS, MscK, MscM) revealed that the release of 5-hydroxyectoine under osmotic steady-state conditions occurred independently of these microbial safety valves. In shake-flask experiments, 2.13 g l−1 ectoine (15 mM) was completely converted into 5-hydroxyectoine within 24 h. Conclusions We describe here a recombinant E. coli cell factory for the production and secretion of the chemical chaperone 5-hydroxyectoine free from contaminating ectoine. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-University Marburg at Marburg, 35043, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany. .,LOEWE Center for Synthetic Microbiology, Philipps-University Marburg at Marburg, 35043, Marburg, Germany. .,Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany.
| |
Collapse
|
13
|
Borges JC, Seraphim TV, Dores-Silva PR, Barbosa LRS. A review of multi-domain and flexible molecular chaperones studies by small-angle X-ray scattering. Biophys Rev 2016; 8:107-120. [PMID: 28510050 PMCID: PMC5425780 DOI: 10.1007/s12551-016-0194-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
Intrinsic flexibility is closely related to protein function, and a plethora of important regulatory proteins have been found to be flexible, multi-domain or even intrinsically disordered. On the one hand, understanding such systems depends on how these proteins behave in solution. On the other, small-angle X-ray scattering (SAXS) is a technique that fulfills the requirements to study protein structure and dynamics relatively quickly with few experimental limitations. Molecular chaperones from Hsp70 and Hsp90 families are multi-domain proteins containing flexible and/or disordered regions that play central roles in cellular proteostasis. Here, we review the structure and function of these proteins by SAXS. Our general approach includes the use of SAXS data to determine size and shape parameters, as well as protein shape reconstruction and their validation by using accessory biophysical tools. Some remarkable examples are presented that exemplify the potential of the SAXS technique. Protein structure can be determined in solution even at limiting protein concentrations (for example, human mortalin, a mitochondrial Hsp70 chaperone). The protein organization, flexibility and function (for example, the J-protein co-chaperones), oligomeric status, domain organization, and flexibility (for the Hsp90 chaperone and the Hip and Hep1 co-chaperones) may also be determined. Lastly, the shape, structural conservation, and protein dynamics (for the Hsp90 chaperone and both p23 and Aha1 co-chaperones) may be studied by SAXS. We believe this review will enhance the application of the SAXS technique to the study of the molecular chaperones.
Collapse
Affiliation(s)
- Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| | - Thiago V Seraphim
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | |
Collapse
|
14
|
Mikles DC, Bhat V, Schuchardt BJ, McDonald CB, Farooq A. Effect of osmolytes on the binding of EGR1 transcription factor to DNA. Biopolymers 2016; 103:74-87. [PMID: 25269753 DOI: 10.1002/bip.22556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 11/11/2022]
Abstract
Osmolytes play a key role in maintaining protein stability and mediating macromolecular interactions within the intracellular environment of the cell. Herein, we show that osmolytes such as glycerol, sucrose, and polyethylene glycol 400 (PEG400) mitigate the binding of early growth response (protein) 1 (EGR1) transcription factor to DNA in a differential manner. Thus, while physiological concentrations of glycerol only moderately reduce the binding affinity, addition of sucrose and PEG400 is concomitant with a loss in the binding affinity by an order of magnitude. This salient observation suggests that EGR1 is most likely subject to conformational equilibrium and that the osmolytes exert their effect via favorable interactions with the unliganded conformation. Consistent with this notion, our analysis reveals that while EGR1 displays rather high structural stability in complex with DNA, the unliganded conformation becomes significantly destabilized in solution. In particular, while liganded EGR1 adopts a well-defined arc-like architecture, the unliganded protein samples a comparatively large conformational space between two distinct states that periodically interconvert between an elongated rod-like shape and an arc-like conformation on a submicrosecond time scale. Consequently, the ability of osmolytes to favorably interact with the unliganded conformation so as to stabilize it could account for the negative effect of osmotic stress on EGR1-DNA interaction observed here. Taken together, our study sheds new light on the role of osmolytes in modulating a key protein-DNA interaction.
Collapse
Affiliation(s)
- David C Mikles
- Department of Biochemistry and Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL, 33136
| | | | | | | | | |
Collapse
|
15
|
Halpin JC, Huang B, Sun M, Street TO. Crowding Activates Heat Shock Protein 90. J Biol Chem 2016; 291:6447-55. [PMID: 26797120 DOI: 10.1074/jbc.m115.702928] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 11/06/2022] Open
Abstract
Hsp90 is a dimeric ATP-dependent chaperone involved in the folding, maturation, and activation of diverse target proteins. Extensive in vitro structural analysis has led to a working model of Hsp90's ATP-driven conformational cycle. An implicit assumption is that dilute experimental conditions do not significantly perturb Hsp90 structure and function. However, Hsp90 undergoes a dramatic open/closed conformational change, which raises the possibility that this assumption may not be valid for this chaperone. Indeed, here we show that the ATPase activity of Hsp90 is highly sensitive to molecular crowding, whereas the ATPase activities of Hsp60 and Hsp70 chaperones are insensitive to crowding conditions. Polymer crowders activate Hsp90 in a non-saturable manner, with increasing efficacy at increasing concentration. Crowders exhibit a non-linear relationship between their radius of gyration and the extent to which they activate Hsp90. This experimental relationship can be qualitatively recapitulated with simple structure-based volume calculations comparing open/closed configurations of Hsp90. Thermodynamic analysis indicates that crowding activation of Hsp90 is entropically driven, which is consistent with a model in which excluded volume provides a driving force that favors the closed active state of Hsp90. Multiple Hsp90 homologs are activated by crowders, with the endoplasmic reticulum-specific Hsp90, Grp94, exhibiting the highest sensitivity. Finally, we find that crowding activation works by a different mechanism than co-chaperone activation and that these mechanisms are independent. We hypothesize that Hsp90 has a higher intrinsic activity in the cell than in vitro.
Collapse
Affiliation(s)
- Jackson C Halpin
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Bin Huang
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Ming Sun
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Timothy O Street
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
16
|
Rajapaksha A, Stanley CB, Todd BA. Effects of macromolecular crowding on the structure of a protein complex: a small-angle scattering study of superoxide dismutase. Biophys J 2015; 108:967-974. [PMID: 25692601 PMCID: PMC4336365 DOI: 10.1016/j.bpj.2014.12.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022] Open
Abstract
Macromolecular crowding can alter the structure and function of biological macromolecules. We used small-angle scattering to measure the effects of macromolecular crowding on the size of a protein complex, SOD (superoxide dismutase). Crowding was induced using 400 MW PEG (polyethylene glycol),TEG (triethylene glycol), α-MG (methyl-α-glucoside), and TMAO (trimethylamine n-oxide). Parallel small-angle neutron scattering and small-angle x-ray scattering allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. Considering the osmotic pressure due to PEG, this deformation corresponds to a highly compressible structure. Small-angle x-ray scattering done in the presence of TEG suggests that for further deformation-beyond a 9% decrease in volume-the resistance to deformation may increase dramatically.
Collapse
Affiliation(s)
- Ajith Rajapaksha
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana
| | - Christopher B Stanley
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Brian A Todd
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
17
|
Trinucleotide repeats and protein folding and disease: the perspective from studies with the androgen receptor. Future Sci OA 2015; 1:FSO47. [PMID: 28031874 PMCID: PMC5137883 DOI: 10.4155/fso.15.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The androgen receptor (AR), a ligand activated transcription factor plays a number of roles in reproduction, homeostasis and pathogenesis of disease. It has two major polymorphic sequences; a polyglutamine and a polyglycine repeat that determine the length of the protein and influence receptor folding, structure and function. Here, we review the role the folding of the AR plays in the pathogenesis of spinal-bulbar muscular atrophy (SBMA), a neuromuscular degenerative disease arising from expansion of the polyglutamine repeat. We discuss current management for SBMA patients and how research on AR structure function may lead to future drug treatments.
Collapse
|
18
|
Niu S, Ruotolo BT. Collisional unfolding of multiprotein complexes reveals cooperative stabilization upon ligand binding. Protein Sci 2015; 24:1272-81. [PMID: 25970849 DOI: 10.1002/pro.2699] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/13/2015] [Accepted: 04/29/2015] [Indexed: 12/19/2022]
Abstract
Cooperative binding mechanisms are a common feature in biology, enabling a diverse range of protein-based molecular machines to regulate activities ranging from oxygen uptake to cellular membrane transport. Much, however, is not known about such cooperative binding mechanisms, including how such events typically add to the overall stability of such protein systems. Measurements of such cooperative stabilization events are challenging, as they require the separation and resolution of individual protein complex bound states within a mixture of potential stoichiometries to individually assess protein stabilities. Here, we report ion mobility-mass spectrometry results for the concanavalin A tetramer bound to a range of polysaccharide ligands. We use collision induced unfolding, a relatively new methodology that functions as a gas-phase analog of calorimetry experiments in solution, to individually assess the stabilities of concanavalin A bound states. By comparing the differences in activation voltage required to unfold different concanavalin A-ligand stoichiometries, we find evidence suggesting a cooperative stabilization of concanavalin A occurs upon binding most carbohydrate ligands. We critically evaluate this observation by assessing a broad range of ligands, evaluating the unfolding properties of multiple protein charge states, and by comparing our gas-phase results with those obtained from calorimetry experiments carried out in solution.
Collapse
Affiliation(s)
- Shuai Niu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
19
|
Blacklock K, Verkhivker GM. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications. PLoS Comput Biol 2014; 10:e1003679. [PMID: 24922508 PMCID: PMC4055421 DOI: 10.1371/journal.pcbi.1003679] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023] Open
Abstract
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. Functional versatility and structural adaptability of the Hsp90 chaperones are regulated by allosteric interactions that allow for diverse functions including modulation of ATP hydrolysis and binding with cochaperones and client proteins. By integrating molecular simulations and network-based approaches we have characterized conformational dynamics and allosteric interactions in different functional forms of Hsp90. The network centrality analysis and structural mapping of allosteric communications have revealed a small-world organization of the interaction network that is mediated by functionally important residues of the Hsp90 activity. We have found that effective allosteric communications in the Hsp90 chaperone may be provided by structurally stable residues that exhibit high centrality properties. Nucleotide-specific rewiring of the network topology and assortative organization of functional residues may protect the active form of the chaperone from random perturbations and detrimental mutations. These results have confirmed that allosteric interactions in the Hsp90 chaperone may be determined by a small-world network of functional residues that can regulate the network efficiency and resiliency by modulating the statistical ensemble of communication pathways in response to functional requirements of the ATPase cycle.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America; Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
20
|
Cortez L, Sim V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion 2014; 8:28938. [PMID: 24818993 DOI: 10.4161/pri.28938] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several neurodegenerative diseases are caused by defects in protein folding, including Alzheimer, Parkinson, Huntington, and prion diseases. Once a disease-specific protein misfolds, it can then form toxic aggregates which accumulate in the brain, leading to neuronal dysfunction, cell death, and clinical symptoms. Although significant advances have been made toward understanding the mechanisms of protein aggregation, there are no curative treatments for any of these diseases. Since protein misfolding and the accumulation of aggregates are the most upstream events in the pathological cascade, rescuing or stabilizing the native conformations of proteins is an obvious therapeutic strategy. In recent years, small molecules known as chaperones have been shown to be effective in reducing levels of misfolded proteins, thus minimizing the accumulation of aggregates and their downstream pathological consequences. Chaperones are classified as molecular, pharmacological, or chemical. In this mini-review we summarize the modes of action of different chemical chaperones and discuss evidence for their efficacy in the treatment of protein folding diseases in vitro and in vivo.
Collapse
Affiliation(s)
- Leonardo Cortez
- Department of Medicine - Division of Neurology; Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton, AB Canada
| | - Valerie Sim
- Department of Medicine - Division of Neurology; Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton, AB Canada
| |
Collapse
|
21
|
Bashir A, Hoffmann T, Smits SHJ, Bremer E. Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis. Appl Environ Microbiol 2014; 80:2773-85. [PMID: 24561588 PMCID: PMC3993278 DOI: 10.1128/aem.00078-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/17/2014] [Indexed: 12/13/2022] Open
Abstract
Glycine betaine is a potent osmotic and thermal stress protectant of many microorganisms. Its synthesis from glycine results in the formation of the intermediates monomethylglycine (sarcosine) and dimethylglycine (DMG), and these compounds are also produced when it is catabolized. Bacillus subtilis does not produce sarcosine or DMG, and it cannot metabolize these compounds. Here we have studied the potential of sarcosine and DMG to protect B. subtilis against osmotic, heat, and cold stress. Sarcosine, a compatible solute that possesses considerable protein-stabilizing properties, did not serve as a stress protectant of B. subtilis. DMG, on the other hand, proved to be only moderately effective as an osmotic stress protectant, but it exhibited good heat stress-relieving and excellent cold stress-relieving properties. DMG is imported into B. subtilis cells primarily under osmotic and temperature stress conditions via OpuA, a member of the ABC family of transporters. Ligand-binding studies with the extracellular solute receptor (OpuAC) of the OpuA system showed that OpuAC possesses a moderate affinity for DMG, with a Kd value of approximate 172 μM; its Kd for glycine betaine is about 26 μM. Docking studies using the crystal structures of the OpuAC protein with the sulfur analog of DMG, dimethylsulfonioacetate, as a template suggest a model of how the DMG molecule can be stably accommodated within the aromatic cage of the OpuAC ligand-binding pocket. Collectively, our data show that the ability to acquire DMG from exogenous sources under stressful environmental conditions helps the B. subtilis cell to cope with growth-restricting osmotic and temperature challenges.
Collapse
Affiliation(s)
- Abdallah Bashir
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Al-Azhar University—Gaza, Faculty of Science, Biology Department, Gaza
- Max Planck Institute for Terrestrial Microbiology, Emeritus Group of R. K. Thauer, Marburg, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
22
|
Becker J, Schäfer R, Kohlstedt M, Harder BJ, Borchert NS, Stöveken N, Bremer E, Wittmann C. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact 2013; 12:110. [PMID: 24228689 PMCID: PMC4225761 DOI: 10.1186/1475-2859-12-110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/05/2013] [Indexed: 11/14/2022] Open
Abstract
Background The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is growing interest in uncoupling the production of ectoines from the typical conditions required for their synthesis, and instead design strains that naturally release ectoines into the medium without the need for osmotic changes, since the use of high-salinity media in the fermentation process imposes notable constraints on the costs, design, and durability of fermenter systems. Results Here, we used a Corynebacterium glutamicum strain as a cellular chassis to establish a microbial cell factory for the biotechnological production of ectoines. The implementation of a mutant aspartokinase enzyme ensured efficient supply of L-aspartate-beta-semialdehyde, the precursor for ectoine biosynthesis. We further engineered the genome of the basic C. glutamicum strain by integrating a codon-optimized synthetic ectABCD gene cluster under expressional control of the strong and constitutive C. glutamicum tuf promoter. The resulting recombinant strain produced ectoine and excreted it into the medium; however, lysine was still found as a by-product. Subsequent inactivation of the L-lysine exporter prevented the undesired excretion of lysine while ectoine was still exported. Using the streamlined cell factory, a fed-batch process was established that allowed the production of ectoine with an overall productivity of 6.7 g L-1 day-1 under growth conditions that did not rely on the use of high-salinity media. Conclusions The present study describes the construction of a stable microbial cell factory for recombinant production of ectoine. We successfully applied metabolic engineering strategies to optimize its synthetic production in the industrial workhorse C. glutamicum and thereby paved the way for further improvements in ectoine yield and biotechnological process optimization.
Collapse
Affiliation(s)
- Judith Becker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Heat-shock protein 90 (Hsp90) is an ubiquitous chaperone that is essential for cell function in that it promotes client-protein folding and stabilization. Its function is tightly controlled by an ATP-dependent large conformational transition between the open and closed states of the Hsp90 dimer. The underlying allosteric pathway has remained largely unknown, but it is revealed here in atomistic detail for the Escherichia coli homolog HtpG. Using force-distribution analysis based on molecular-dynamics simulations (>1 μs in total), we identify an internal signaling pathway that spans from the nucleotide-binding site to an ~2.3-nm-distant region in the HtpG middle domain, that serves as a dynamic hinge region, and to a putative client-protein-binding site in the middle domain. The force transmission is triggered by ATP capturing a magnesium ion and thereby rotating and bending a proximal long α-helix, which represents the major force channel into the middle domain. This allosteric mechanism is, with statistical significance, distinct from the dynamics in the ADP and apo states. Tracking the distribution of forces is likely to be a promising tool for understanding and guiding experiments of complex allosteric proteins in general.
Collapse
Affiliation(s)
- Christian Seifert
- Molecular Biomechanics, Heidelberger Institut für Theoretische Studien gGmbH, Heidelberg, Germany
| | | |
Collapse
|
24
|
Lilyestrom WG, Shire SJ, Scherer TM. Influence of the cosolute environment on IgG solution structure analyzed by small-angle X-ray scattering. J Phys Chem B 2012; 116:9611-8. [PMID: 22827493 PMCID: PMC3774592 DOI: 10.1021/jp303839t] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Small-angle X-ray scattering experiments of two monoclonal antibodies (mAbs) were performed as a function of Hofmeister salt type and concentration including 100 mM Na(2)SO(4), 100-600 mM of NaSCN, or 100-600 mM arginine chloride at pH 6.0 to yield information on the effects of cosolutes on mAb solution conformation and flexibility. Minimal selected ensemble (MSE) procedures used to reconstruct the SAXS form factors revealed that both IgG1 mAbs exist in a conformational equilibrium with two subpopulations that vary in overall shape and size. The "closed" mAb conformation is characterized by a maximum dimension of ∼155 Å and shorter distances between Fab-Fab and Fab-FC domains. The "open" mAb conformation has a maximum dimension of ∼175 Å and an increase in the interdomain distances with concomitant increases in overall mAb flexibility. Analysis of the distribution of shapes and sizes of mAb structures within the conformational equilibrium indicates that they remain essentially unchanged under conditions with a broad range of chaotropic and kosmotropic salts including 100-600 mM NaSCN and 100 mM Na(2)SO(4). Analysis of the conformations within each MSE population under various conditions reveals a striking similarity between many of the MSE structures, IgG crystal structures, and single-molecule imaging studies; MSE analysis of mAb form factors also identified an overall relaxation of the mAb structure unique to solution conditions containing arginine chloride, characterized by an increased maximum dimension and a shift toward the population of the "open" mAb conformation. Our results provide the first comprehensive characterization of mAb conformational diversity in solution and are of direct relevance to understanding the effects of solution conditions on protein structural dynamics and stability.
Collapse
Affiliation(s)
- Wayne G Lilyestrom
- Genentech, Late Stage Pharmaceutical Development, 1 DNA Way, South San Francisco, California 94080, United States
| | | | | |
Collapse
|
25
|
Simunovic M, Voth GA. Molecular and thermodynamic insights into the conformational transitions of Hsp90. Biophys J 2012; 103:284-92. [PMID: 22853906 DOI: 10.1016/j.bpj.2012.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
Hsp90, the most abundant cellular protein, has been implicated in numerous physiological and pathological processes. It controls protein folding and prevents aggregation, but it also plays a role in cancer and neurological disorders, making it an attractive drug target. Experimental efforts have demonstrated its remarkable structural flexibility and conformational complexity, which enable it to accommodate a variety of clients, but have not been able to provide a detailed molecular description of the conformational transitions. In our molecular dynamics simulations, Hsp90 underwent dramatic structural rearrangements into energetically favorable stretched and compact states. The transitions were guided by key electrostatic interactions between specific residues of opposite subunits. Nucleotide-bound structures showed the same conformational flexibility, although ADP and ATP seemed to potentiate these interactions by stabilizing two different closed conformations. Our observations may explain the difference in dynamic behavior observed among Hsp90 homologs, and the atomic resolution of the conformational transitions helps elucidate the complex chaperone machinery.
Collapse
Affiliation(s)
- Mijo Simunovic
- Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
26
|
Nau-Wagner G, Opper D, Rolbetzki A, Boch J, Kempf B, Hoffmann T, Bremer E. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor. J Bacteriol 2012; 194:2703-14. [PMID: 22408163 PMCID: PMC3347207 DOI: 10.1128/jb.06642-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/27/2012] [Indexed: 11/20/2022] Open
Abstract
Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent K(D) (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.
Collapse
Affiliation(s)
- Gabriele Nau-Wagner
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Bandyopadhyay A, Saxena K, Kasturia N, Dalal V, Bhatt N, Rajkumar A, Maity S, Sengupta S, Chakraborty K. Chemical chaperones assist intracellular folding to buffer mutational variations. Nat Chem Biol 2012; 8:238-45. [PMID: 22246401 PMCID: PMC3527004 DOI: 10.1038/nchembio.768] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/06/2011] [Indexed: 11/09/2022]
Abstract
Hidden genetic variations harbor potential for the evolution of new traits. Molecular chaperones, that assist protein folding, may conceal genetic variations in protein coding regions. Here, we investigate if the chemical milieu of cells has the potential to alleviate intracellular protein folding; potentially implicating a role of osmolytes in concealing genetic variations. Using the model osmolyte TMAO, we uncover that it can buffer mutations that impose kinetic traps in the folding pathways of two model proteins. Using this information, we rationally designed TMAO-dependent mutants in vivo, starting from a TMAO-independent protein. Strikingly, we delineate different osmolytes to have a unique spectrum of buffered-mutations. Consequently, the chemical milieu of cells may alter the folding pathways of unique mutant variants in polymorphic populations and lead to unanticipated spectra of genetic buffering.
Collapse
Affiliation(s)
- Anannya Bandyopadhyay
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity. J Mol Biol 2011; 415:3-15. [PMID: 22063096 PMCID: PMC3282117 DOI: 10.1016/j.jmb.2011.10.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 12/25/2022]
Abstract
The ubiquitous molecular chaperone Hsp90 plays a critical role in substrate protein folding and maintenance, but the functional mechanism has been difficult to elucidate. In previous work, a model Hsp90 substrate revealed an activation process in which substrate binding accelerates a large open/closed conformational change required for ATP hydrolysis by Hsp90. While this could serve as an elegant mechanism for conserving ATP usage for productive interactions on the substrate, the structural origin of substrate-catalyzed Hsp90 conformational changes is unknown. Here, we find that substrate binding affects an intrinsically unfavorable rotation of the Hsp90 N-terminal domain (NTD) relative to the middle domain (MD) that is required for closure. We identify an MD substrate binding region on the interior cleft of the Hsp90 dimer and show that a secondary set of substrate contacts drives an NTD orientation change on the opposite monomer. These results suggest an Hsp90 activation mechanism in which cross-monomer contacts mediated by a partially structured substrate prime the chaperone for its functional activity.
Collapse
|
29
|
Street TO, Lavery LA, Agard DA. Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol Cell 2011; 42:96-105. [PMID: 21474071 PMCID: PMC3105473 DOI: 10.1016/j.molcel.2011.01.029] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/03/2010] [Accepted: 01/07/2011] [Indexed: 01/05/2023]
Abstract
Hsp90 is a ubiquitous molecular chaperone. Previous structural analysis demonstrated that Hsp90 can adopt a large number of structurally distinct conformations; however, the functional role of this flexibility is not understood. Here we investigate the structural consequences of substrate binding with a model system in which Hsp90 interacts with a partially folded protein (Δ131Δ), a well-studied fragment of staphylococcal nuclease. SAXS measurements reveal that under apo conditions, Hsp90 partially closes around Δ131Δ, and in the presence of AMPPNP, Δ131Δ binds with increased affinity to Hsp90's fully closed state. FRET measurements show that Δ131Δ accelerates the nucleotide-driven open/closed transition and stimulates ATP hydrolysis by Hsp90. NMR measurements reveal that Hsp90 binds to a specific, highly structured region of Δ131Δ. These results suggest that Hsp90 preferentially binds a locally structured region in a globally unfolded protein, and this binding drives functional changes in the chaperone by lowering a rate-limiting conformational barrier.
Collapse
Affiliation(s)
- Timothy O. Street
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Laura A. Lavery
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - David A. Agard
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158-2517, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158-2517, USA
| |
Collapse
|
30
|
Ma L, Xu M, Oberhauser AF. Naturally occurring osmolytes modulate the nanomechanical properties of polycystic kidney disease domains. J Biol Chem 2010; 285:38438-43. [PMID: 20937836 DOI: 10.1074/jbc.m110.183913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polycystin-1 (PC1) is a large membrane protein that is expressed along the renal tubule and exposed to a wide range of concentrations of urea. Urea is known as a common denaturing osmolyte that affects protein function by destabilizing their structure. However, it is known that the native conformation of proteins can be stabilized by protecting osmolytes that are found in the mammalian kidney. PC1 has an unusually long ectodomain with a multimodular structure including 16 Ig-like polycystic kidney disease (PKD) domains. Here, we used single-molecule force spectroscopy to study directly the effects of several naturally occurring osmolytes on the mechanical properties of PKD domains. This experimental approach more closely mimics the conditions found in vivo. We show that upon increasing the concentration of urea there is a remarkable decrease in the mechanical stability of human PKD domains. We found that protecting osmolytes such as sorbitol and trimethylamine N-oxide can counteract the denaturing effect of urea. Moreover, we found that the refolding rate of a structurally homologous archaeal PKD domain is significantly slowed down in urea, and this effect was counteracted by sorbitol. Our results demonstrate that naturally occurring osmolytes can have profound effects on the mechanical unfolding and refolding pathways of PKD domains. Based on these findings, we hypothesize that osmolytes such as urea or sorbitol may modulate PC1 mechanical properties and may lead to changes in the activation of the associated polycystin-2 channel or other intracellular events mediated by PC1.
Collapse
Affiliation(s)
- Liang Ma
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
31
|
Burns JN, Orwig SD, Harris JL, Watkins JD, Vollrath D, Lieberman RL. Rescue of glaucoma-causing mutant myocilin thermal stability by chemical chaperones. ACS Chem Biol 2010; 5:477-87. [PMID: 20334347 DOI: 10.1021/cb900282e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutations in myocilin cause an inherited form of open angle glaucoma, a prevalent neurodegenerative disorder associated with increased intraocular pressure. Myocilin forms part of the trabecular meshwork extracellular matrix presumed to regulate intraocular pressure. Missense mutations, clustered in the olfactomedin (OLF) domain of myocilin, render the protein prone to aggregation in the endoplasmic reticulum of trabecular meshwork cells, causing cell dysfunction and death. Cellular studies have demonstrated temperature-sensitive secretion of myocilin mutants, but difficulties in expression and purification have precluded biophysical characterization of wild-type (wt) myocilin and disease-causing mutants in vitro. We have overcome these limitations by purifying wt and select glaucoma-causing mutant (D380A, I477N, I477S, K423E) forms of the OLF domain (228-504) fused to a maltose binding protein (MBP) from E. coli . Monomeric fusion proteins can be isolated in solution. To determine the relative stability of wt and mutant OLF domains, we developed a fluorescence thermal stability assay without removal of MBP and provide the first direct evidence that mutated OLF is folded but less thermally stable than wt. We tested the ability of seven chemical chaperones to stabilize mutant myocilin. Only sarcosine and trimethylamine N-oxide were capable of shifting the melting temperature of all mutants tested to near that of wt OLF. Our work lays the foundation for the identification of tailored small molecules capable of stabilizing mutant myocilin and promoting secretion to the extracellular matrix, to better control intraocular pressure and to ultimately delay the onset of myocilin glaucoma.
Collapse
Affiliation(s)
- J. Nicole Burns
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| | - Susan D. Orwig
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| | - Julia L. Harris
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| | - J. Derrick Watkins
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| | - Douglas Vollrath
- Departments of Genetics and Ophthalmology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332
| |
Collapse
|