1
|
Kojima M, Abe S, Furuta T, Tran DP, Hirata K, Yamashita K, Hishikawa Y, Kitao A, Ueno T. Engineering of an in-cell protein crystal for fastening a metastable conformation of a target miniprotein. Biomater Sci 2023; 11:1350-1357. [PMID: 36594419 DOI: 10.1039/d2bm01759h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein crystals can be utilized as porous scaffolds to capture exogenous molecules. Immobilization of target proteins using protein crystals is expected to facilitate X-ray structure analysis of proteins that are difficult to be crystallized. One of the advantages of scaffold-assisted structure determination is the analysis of metastable structures that are not observed in solution. However, efforts to fix target proteins within the pores of scaffold protein crystals have been limited due to the lack of strategies to control protein-protein interactions formed in the crystals. In this study, we analyze the metastable structure of the miniprotein, CLN025, which forms a β-hairpin structure in solution, using a polyhedra crystal (PhC), an in-cell protein crystal. CLN025 is successfully fixed within the PhC scaffold by replacing the original loop region. X-ray crystal structure analysis and molecular dynamics (MD) simulation reveal that CLN025 is fixed as a helical structure in a metastable state by non-covalent interactions in the scaffold crystal. These results indicate that modulation of intermolecular interactions can trap various protein conformations in the engineered PhC and provides a new strategy for scaffold-assisted structure determination.
Collapse
Affiliation(s)
- Mariko Kojima
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Kunio Hirata
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Keitaro Yamashita
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Yuki Hishikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan. .,International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
2
|
Han X, Maita N, Shimada A, Kohda D. Effects of targeting signal mutations in a mitochondrial presequence on the spatial distribution of the conformational ensemble in the binding site of Tom20. Protein Sci 2022; 31:e4433. [PMID: 36173160 PMCID: PMC9490799 DOI: 10.1002/pro.4433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
The 20-kDa TOM (translocase of outer mitochondrial membrane) subunit, Tom20, is the first receptor of the protein import pathway into mitochondria. Tom20 recognizes the mitochondrial targeting signal embedded in the presequences attached to mature mitochondrial proteins, as an N-terminal extension. Consequently, ~1,000 different mitochondrial proteins are sorted into the mitochondrial matrix, and distinguished from non-mitochondrial proteins. We previously reported the MPRIDE (multiple partial recognitions in dynamic equilibrium) mechanism to explain the structural basis of the promiscuous recognition of presequences by Tom20. A subset of the targeting signal features is recognized in each pose of the presequence in the binding state, and all of the features are collectively recognized in the dynamic equilibrium between the poses. Here, we changed the volumes of the hydrophobic side chains in the targeting signal, while maintaining the binding affinity. We tethered the mutated presequences to the binding site of Tom20 and placed them in the crystal contact-free space (CCFS) created in the crystal lattice. The spatial distributions of the mutated presequences were visualized as smeared electron densities in the low-pass filtered difference maps obtained by X-ray crystallography. The mutated presequence ensembles shifted their positions in the binding state to accommodate the larger side chains, thus providing positive evidence supporting the use of the MPRIDE mechanism in the promiscuous recognition by Tom20.
Collapse
Affiliation(s)
- Xiling Han
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Nobuo Maita
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
- Institute for Quantum Life Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
3
|
Akiyama R, Annaka M, Kohda D, Kubota H, Maeda Y, Matsumori N, Mizuno D, Yoshida N. Biophysics at Kyushu University. Biophys Rev 2020; 12:245-247. [PMID: 32067193 PMCID: PMC7242550 DOI: 10.1007/s12551-020-00643-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ryo Akiyama
- Department of Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Masahiko Annaka
- Department of Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daisuke Kohda
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Kubota
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusuke Maeda
- Department of Physics, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka, 819-0395, Japan
| | - Norio Yoshida
- Department of Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Bala S, Shinya S, Srivastava A, Ishikawa M, Shimada A, Kobayashi N, Kojima C, Tama F, Miyashita O, Kohda D. Crystal contact-free conformation of an intrinsically flexible loop in protein crystal: Tim21 as the case study. Biochim Biophys Acta Gen Subj 2019; 1864:129418. [PMID: 31449839 DOI: 10.1016/j.bbagen.2019.129418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/02/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND In protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules. METHODS We designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal. RESULTS Yeast Tim21 was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides adjustable freedom to arrange loop 2 in the CCFS. We re-determined the NMR structure of yeast Tim21, and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the conformational similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the center of the ensembles of the loop 2 conformations in the NMR and MD structures. CONCLUSIONS Loop 2 of yeast Tim21 in the CCFS adopts a representative, dominant conformation in solution. GENERAL SIGNIFICANCE No single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.
Collapse
Affiliation(s)
- Siqin Bala
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoko Shinya
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Arpita Srivastava
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Marie Ishikawa
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan; Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Florence Tama
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Center for Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- Center for Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
5
|
Conformational ensemble of an intrinsically flexible loop in mitochondrial import protein Tim21 studied by modeling and molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2019; 1864:129417. [PMID: 31445064 DOI: 10.1016/j.bbagen.2019.129417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tim21, a subunit of a highly dynamic translocase of the inner mitochondrial membrane (TIM23) complex, translocates proteins by interacting with subunits in the translocase of the outer membrane (TOM) complex and Tim23 channel in the TIM23 complex. A loop segment in Tim21, which is in close proximity of the binding site of Tim23, has different conformations in X-ray, NMR and new crystal contact-free space (CCFS) structures. MD simulations can provide information on the structure and dynamics of the loop in solution. METHODS The conformational ensemble of the loop was characterized using loop modeling and molecular dynamics (MD) simulations. RESULTS MD simulations confirmed mobility of the loop. Multidimensional scaling and clustering were used to characterize the dynamic conformational ensemble of the loop. Free energy landscape showed that the CCFS crystal structure occupied a low energy region as compared to the conventional X-ray crystal structure. Analysis of crystal packing indicates that the CCFS provides larger conformational space for the motions of the loop. CONCLUSIONS Our work reported the conformational ensemble of the loop in solution, which is in agreement with the structure obtained from CCFS approach. The combination of the experimental techniques and computational methods is beneficial for studying highly flexible regions of proteins. GENERAL SIGNIFICANCE Computational methods, such as loop modeling and MD simulations, have proved to be useful for studying conformational flexibility of proteins. These methods in integration with experimental techniques such as CCFS has the potential to transform the studies on flexible regions of proteins.
Collapse
|
6
|
Nagai T, Tama F, Miyashita O. Cryo-Cooling Effect on DHFR Crystal Studied by Replica-Exchange Molecular Dynamics Simulations. Biophys J 2019; 116:395-405. [PMID: 30638963 DOI: 10.1016/j.bpj.2018.11.3139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
Cryo-cooling is routinely performed before x-ray diffraction image collection to reduce the damage to crystals due to ionizing radiation. It has been suggested that although backbone structures are usually very similar between room temperature and cryo-temperature, cryo-cooling may hamper biologically relevant dynamics. In this study, the crystal of Escherichia coli dihydrofolate reductase is studied with replica-exchange molecular dynamics simulation, and the results are compared with the crystal structure determined at cryo-temperature and room temperature with the time-averaged ensemble method. Although temperature dependence of unit cell compaction and root mean-square fluctuation of Cα is found in accord with experiment, it is found that the protein structure at low temperature can be more heterogeneous than the ensemble of structures reported by using the time-averaged ensemble method, encouraging further development of the time-averaged ensemble method and indicating that data should be examined carefully to avoid overinterpretation of one average structure.
Collapse
Affiliation(s)
- Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Florence Tama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; ITbM, Nagoya University, Nagoya, Aichi, Japan; RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| | | |
Collapse
|
7
|
Srivastava A, Tama F, Kohda D, Miyashita O. Computational investigation of the conformational dynamics in Tom20-mitochondrial presequence tethered complexes. Proteins 2018; 87:81-90. [DOI: 10.1002/prot.25625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Arpita Srivastava
- Department of Physics; Graduate School of Science, Nagoya University; Nagoya Japan
| | - Florence Tama
- Department of Physics; Graduate School of Science, Nagoya University; Nagoya Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University; Nagoya Japan
- RIKEN Center for Computational Science; Kobe Japan
| | - Daisuke Kohda
- Division of Structural Biology; Medical Institute of Bioregulation, Kyushu University; Fukuoka Japan
| | | |
Collapse
|
8
|
Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Int J Mol Sci 2018; 19:E3401. [PMID: 30380757 PMCID: PMC6274748 DOI: 10.3390/ijms19113401] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Arpita Srivastava
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Osamu Miyashita
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
9
|
The V-motifs facilitate the substrate capturing step of the PTS elevator mechanism. J Struct Biol 2016; 196:496-502. [PMID: 27720943 DOI: 10.1016/j.jsb.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
Abstract
We propose that the alternative crystal forms of outward open UlaA (which are experimental, not simulated, and contain the substrate in the cavity) can be used to interpret/validate the MD results from MalT (the substrate capture step, which involves the mobile second TMSs of the V-motifs, TMSs 2 and 7). Since the crystal contacts are the same between the two alternative crystal forms of outward open UlaA, the striking biological differences noted, including rearranged hydrogen bonds and salt bridge coordination, are not attributable to crystal packing differences. Using transport assays, we identified G58 and G286 as essential for normal vitamin C transport, but the comparison of alternative crystal forms revealed that these residues to unhinge TMS movements from substrate-binding side chains, rendering the mid-TMS regions of homologous TMSs 2 and 7 relatively immobile. While the TMS that is involved in substrate binding in MalT is part of the homologous bundle that holds the two separate halves of the transport assembly (two proteins) together, an unequal effect of the two knockouts was observed for UlaA where both V-motifs are free from such dimer interface interactions.
Collapse
|
10
|
Pentameric quaternary structure of the intracellular domain of serotonin type 3A receptors. Sci Rep 2016; 6:23921. [PMID: 27045630 PMCID: PMC4820698 DOI: 10.1038/srep23921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/15/2016] [Indexed: 01/02/2023] Open
Abstract
In spite of extensive efforts over decades an experimentally-derived structure of full-length eukaryotic pentameric ligand-gated ion channels (pLGICs) is still lacking. These pharmaceutically highly-relevant channels contain structurally well-conserved and characterized extracellular and transmembrane domains. The intracellular domain (ICD), however, has been orphaned in structural studies based on the consensus assumption of being largely disordered. In the present study, we demonstrate for the first time that the serotonin type 3A (5-HT3A) ICD assembles into stable pentamers in solution in the absence of the other two domains, thought to be the drivers for oligomerization. Additionally, the soluble 5-HT3A-ICD construct interacted with the protein RIC-3 (resistance to inhibitors of cholinesterase). The interaction provides evidence that the 5-HT3A-ICD is not only required but also sufficient for interaction with RIC-3. Our results suggest the ICD constitutes an oligomerization domain. This novel role significantly adds to its known contributions in receptor trafficking, targeting, and functional fine-tuning. The innate diversity of the ICDs with sizes ranging from 50 to 280 amino acids indicates new methodologies need to be developed to determine the structures of these domains. The use of soluble ICD proteins that we report in the present study constitutes a useful approach to address this gap.
Collapse
|