1
|
Sen A, Chowdhury D, Kunwar A. Coordination, cooperation, competition, crowding and congestion of molecular motors: Theoretical models and computer simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:563-650. [PMID: 38960486 DOI: 10.1016/bs.apcsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/05/2024]
Abstract
Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
Collapse
Affiliation(s)
- Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Klobusicky JJ, Fricks J, Kramer PR. Effective behavior of cooperative and nonidentical molecular motors. RESEARCH IN THE MATHEMATICAL SCIENCES 2020; 7:29. [PMID: 33870090 PMCID: PMC8049358 DOI: 10.1007/s40687-020-00230-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/04/2020] [Accepted: 09/04/2020] [Indexed: 06/12/2023]
Abstract
Analytical formulas for effective drift, diffusivity, run times, and run lengths are derived for an intracellular transport system consisting of a cargo attached to two cooperative but not identical molecular motors (for example, kinesin-1 and kinesin-2) which can each attach and detach from a microtubule. The dynamics of the motor and cargo in each phase are governed by stochastic differential equations, and the switching rates depend on the spatial configuration of the motor and cargo. This system is analyzed in a limit where the detached motors have faster dynamics than the cargo, which in turn has faster dynamics than the attached motors. The attachment and detachment rates are also taken to be slow relative to the spatial dynamics. Through an application of iterated stochastic averaging to this system, and the use of renewal-reward theory to stitch together the progress within each switching phase, we obtain explicit analytical expressions for the effective drift, diffusivity, and processivity of the motor-cargo system. Our approach accounts in particular for jumps in motor-cargo position that occur during attachment and detachment events, as the cargo tracking variable makes a rapid adjustment due to the averaged fast scales. The asymptotic formulas are in generally good agreement with direct stochastic simulations of the detailed model based on experimental parameters for various pairings of kinesin-1 and kinesin-2 under assisting, hindering, or no load.
Collapse
Affiliation(s)
| | - John Fricks
- Arizona State University, School of Mathematical and Statistical Sciences, Tempe, AZ, USA
| | - Peter R Kramer
- Rensselaer Polytechnic Institute, Mathematical Science Department, Troy, NY, USA
| |
Collapse
|
3
|
Ohashi KG, Han L, Mentley B, Wang J, Fricks J, Hancock WO. Load-dependent detachment kinetics plays a key role in bidirectional cargo transport by kinesin and dynein. Traffic 2020; 20:284-294. [PMID: 30809891 DOI: 10.1111/tra.12639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022]
Abstract
Bidirectional cargo transport along microtubules is carried out by opposing teams of kinesin and dynein motors. Despite considerable study, the factors that determine whether these competing teams achieve net anterograde or retrograde transport in cells remain unclear. The goal of this work is to use stochastic simulations of bidirectional transport to determine the motor properties that most strongly determine overall cargo velocity and directionality. Simulations were carried out based on published optical tweezer characterization of kinesin-1 and kinesin-2, and for available data for cytoplasmic dynein and the dynein-dynactin-BicD2 (DDB) complex. By varying dynein parameters and analyzing cargo trajectories, we find that net cargo transport is predicted to depend minimally on the dynein stall force, but strongly on dynein load-dependent detachment kinetics. In simulations, dynein is dominated by kinesin-1, but DDB and kinesin-1 are evenly matched, recapitulating recent experimental work. Kinesin-2 competes less well against dynein and DDB, and overall, load-dependent motor detachment is the property that most determines a motor's ability to compete in bidirectional transport. It follows that the most effective intracellular regulators of bidirectional transport are predicted to be those that alter motor detachment kinetics rather than motor velocity or stall force.
Collapse
Affiliation(s)
- Kazuka G Ohashi
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania
| | - Lifeng Han
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
| | - Brandon Mentley
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania
| | - Jiaxuan Wang
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania
| | - John Fricks
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania
| |
Collapse
|
4
|
Portet S, Leduc C, Etienne-Manneville S, Dallon J. Deciphering the transport of elastic filaments by antagonistic motor proteins. Phys Rev E 2019; 99:042414. [PMID: 31108720 DOI: 10.1103/physreve.99.042414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2018] [Indexed: 06/09/2023]
Abstract
Intermediate filaments are long elastic fibers that are transported by the microtubule-associated motor proteins kinesin and dynein inside the cell. How elastic filaments are efficiently transported by antagonistic motors is not well understood and is difficult to measure with current experimental techniques. Adapting the tug-of-war paradigm for vesiclelike cargos, we develop a mathematical model to describe the motion of an elastic filament punctually bound to antagonistic motors. As observed in cells, up to three modes of transport are obtained; dynein-driven retrograde, kinesin-driven anterograde fast motions, and a slow motion. Motor properties and initial conditions that depend on intracellular context regulate the transport of filaments. Filament elasticity is found to affect both the mode and the efficiency of transport. We further show that the coordination of motors along the filament emerges from the interplay between intracellular context and elastic properties of filaments.
Collapse
Affiliation(s)
- Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, R3T 2N2 Manitoba, Canada
| | - Cécile Leduc
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France
| | - John Dallon
- Department of Mathematics, Brigham Young University, Provo, UT 84602 Utah, USA
| |
Collapse
|
5
|
Stochastic modeling reveals how motor protein and filament properties affect intermediate filament transport. J Theor Biol 2019; 464:132-148. [DOI: 10.1016/j.jtbi.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023]
|
6
|
Jain K, Khetan N, Athale CA. Collective effects of yeast cytoplasmic dynein based microtubule transport. SOFT MATTER 2019; 15:1571-1581. [PMID: 30664145 DOI: 10.1039/c8sm01434e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Teams of cortically anchored dyneins pulling at microtubules (MTs) are known to be essential for aster, spindle and nuclear positioning during cell division and fertilization. While the single-molecule basis of dynein processivity is now better understood, the effect of increasing numbers of motors on transport is not clear. Here, we examine the collective transport properties of a Saccharomyces cerevisiae cytoplasmic dynein fragment, widely used as a minimal model, by a combination of quantitative MT gliding assays and stochastic simulations. We find both MT lengths and motor densities qualitatively affect the degree of randomness of MT transport. However, the directionality and velocity of MTs increase above a threshold number of motors (N) interacting with a filament. To better understand this behavior, we simulate a gliding assay based on a model of uniformly distributed immobilized motors transporting semi-flexible MTs. Each dynein dimer is modeled as an effective stochastic stepper with asymmetric force dependent detachment dynamics, based on single-molecule experiments. Simulations predict increasing numbers of motors (N) result in a threshold dependent transition in directionality and transport velocity and a monotonic decrease in effective diffusivity. Thus both experiment and theory show qualitative agreement in the emergence of coordination in transport above a threshold number of motor heads. We hypothesize that the phase-transition like property of this dynein could play a role in vivo during yeast mitosis, when this dynein localizes to the cortex and pulls astral MTs of increasing length, resulting in correct positioning and orientation of the nucleus at the bud-neck.
Collapse
Affiliation(s)
- Kunalika Jain
- Div. of Biology, IISER Pune, Dr Homi Bhabha Road, Pune, India.
| | | | | |
Collapse
|
7
|
Retraction of rod-like mitochondria during microtubule-dependent transport. Biosci Rep 2018; 38:BSR20180208. [PMID: 29752335 PMCID: PMC6013701 DOI: 10.1042/bsr20180208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2018] [Revised: 04/07/2018] [Accepted: 05/04/2018] [Indexed: 12/23/2022] Open
Abstract
Molecular motors play relevant roles on the regulation of mitochondria size and shape, essential properties for the cell homeostasis. In this work, we tracked single rod-shaped mitochondria with nanometer precision to explore the performance of microtubule motor teams during processive anterograde and retrograde transport. We analyzed simultaneously the organelle size and verified that mitochondria retracted during retrograde transport with their leading tip moving slower in comparison with the rear tip. In contrast, mitochondria preserved their size during anterograde runs indicating a different performance of plus-end directed teams. These results were interpreted considering the different performance of dynein and kinesin teams and provide valuable information on the collective action of motors during mitochondria transport.
Collapse
|
8
|
Driller-Colangelo AR, Chau KWL, Morgan JM, Derr ND. Cargo rigidity affects the sensitivity of dynein ensembles to individual motor pausing. Cytoskeleton (Hoboken) 2016; 73:693-702. [PMID: 27718534 DOI: 10.1002/cm.21339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022]
Abstract
Cytoplasmic dynein is a minus-end directed microtubule-based motor protein that drives intracellular cargo transport in eukaryotic cells. Although many intracellular cargos are propelled by small groups of dynein motors, the biophysical mechanisms governing ensemble motility remain largely unknown. To investigate the emergent motility of motor ensembles, we have designed a programmable DNA origami synthetic cargo "chassis" enabling us to control the number of dynein motors in the ensemble and vary the rigidity of the cargo chassis itself. Using total internal reflection fluorescence microscopy, we have observed dynein ensembles transporting these cargo chassis along microtubules in vitro. We find that ensemble motility depends on cargo rigidity: as the number of motors increases, ensembles transporting flexible cargos move comparatively faster than a single motor, whereas ensembles transporting rigid cargos move slower than a single motor. To explain this, we show that ensembles connected through flexible cargos are less sensitive to the pauses of individual motors within the ensemble. We conclude that cargo rigidity plays an important role in communicating and coordinating the states of motors, and consequently in the subsequent mechanisms of collective motility. The insensitivity of ensemble-driven cargos to the pausing of individual motors may contribute to the robustness and versatility of intracellular cargo transport. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Karen W L Chau
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Jessica M Morgan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Nathan D Derr
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Center for Microscopy and Imaging, Smith College, Northampton, Massachusetts
| |
Collapse
|
9
|
Takshak A, Roy T, Tandaiya P, Kunwar A. Effect of fuel concentration and force on collective transport by a team of dynein motors. Protein Sci 2016; 26:186-197. [PMID: 27727483 DOI: 10.1002/pro.3065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2016] [Revised: 09/17/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step-size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte-Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte-Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces.
Collapse
Affiliation(s)
- Anjneya Takshak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Tanushree Roy
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Parag Tandaiya
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|