1
|
O’Shea JM, Doerner P, Richardson A, Wood CW. Computational design of Periplasmic binding protein biosensors guided by molecular dynamics. PLoS Comput Biol 2024; 20:e1012212. [PMID: 38885277 PMCID: PMC11213343 DOI: 10.1371/journal.pcbi.1012212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Periplasmic binding proteins (PBPs) are bacterial proteins commonly used as scaffolds for substrate-detecting biosensors. In these biosensors, effector proteins (for example fluorescent proteins) are inserted into a PBP such that the effector protein's output changes upon PBP-substate binding. The insertion site is often determined by comparison of PBP apo/holo crystal structures, but random insertion libraries have shown that this can miss the best sites. Here, we present a PBP biosensor design method based on residue contact analysis from molecular dynamics. This computational method identifies the best previously known insertion sites in the maltose binding PBP, and suggests further previously unknown sites. We experimentally characterise fluorescent protein insertions at these new sites, finding they too give functional biosensors. Furthermore, our method is sufficiently flexible to both suggest insertion sites compatible with a variety of effector proteins, and be applied to binding proteins beyond PBPs.
Collapse
Affiliation(s)
- Jack M. O’Shea
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Natural Sciences, Technical University of Munich, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Peter Doerner
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Annis Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher W. Wood
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Sana B, Chee SMQ, Wongsantichon J, Raghavan S, Robinson RC, Ghadessy FJ. Development and structural characterization of an engineered multi-copper oxidase reporter of protein-protein interactions. J Biol Chem 2019; 294:7002-7012. [PMID: 30770473 PMCID: PMC6497955 DOI: 10.1074/jbc.ra118.007141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Protein–protein interactions (PPIs) are ubiquitous in almost all biological processes and are often corrupted in diseased states. A detailed understanding of PPIs is therefore key to understanding cellular physiology and can yield attractive therapeutic targets. Here, we describe the development and structural characterization of novel Escherichia coli CueO multi-copper oxidase variants engineered to recapitulate protein–protein interactions with commensurate modulation of their enzymatic activities. The fully integrated single-protein sensors were developed through modular grafting of ligand-specific peptides into a highly compliant and flexible methionine-rich loop of CueO. Sensitive detection of diverse ligand classes exemplified by antibodies, an E3 ligase, MDM2 proto-oncogene (MDM2), and protease (SplB from Staphylococcus aureus) was achieved in a simple mix and measure homogeneous format with visually observable colorimetric readouts. Therapeutic antagonism of MDM2 by small molecules and peptides in clinical development for treatment of cancer patients was assayed using the MDM2-binding CueO enzyme. Structural characterization of the free and MDM2-bound CueO variant provided functional insight into signal-transducing mechanisms of the engineered enzymes and highlighted the robustness of CueO as a stable and compliant scaffold for multiple applications.
Collapse
Affiliation(s)
- Barindra Sana
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sharon M Q Chee
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jantana Wongsantichon
- the Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand, and.,the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sarada Raghavan
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Robert C Robinson
- the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Farid J Ghadessy
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore,
| |
Collapse
|
3
|
Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4798793. [PMID: 30719443 PMCID: PMC6335823 DOI: 10.1155/2019/4798793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022]
Abstract
All biosensing platforms rest on two pillars: specific biochemical recognition of a particular analyte and transduction of that recognition into a readily detectable signal. Most existing biosensing technologies utilize proteins that passively bind to their analytes and therefore require wasteful washing steps, specialized reagents, and expensive instruments for detection. To overcome these limitations, protein engineering strategies have been applied to develop new classes of protein-based sensor/actuators, known as protein switches, responding to small molecules. Protein switches change their active state (output) in response to a binding event or physical signal (input) and therefore show a tremendous potential to work as a biosensor. Synthetic protein switches can be created by the fusion between two genes, one coding for a sensor protein (input domain) and the other coding for an actuator protein (output domain) by domain insertion. The binding of a signal molecule to the engineered protein will switch the protein function from an “off” to an “on” state (or vice versa) as desired. The molecular switch could, for example, sense the presence of a metabolite, pollutant, or a biomarker and trigger a cellular response. The potential sensing and response capabilities are enormous; however, the recognition repertoire of natural switches is limited. Thereby, bioengineers have been struggling to expand the toolkit of molecular switches recognition repertoire utilizing periplasmic binding proteins (PBPs) as protein-sensing components. PBPs are a superfamily of bacterial proteins that provide interesting features to engineer biosensors, for instance, immense ligand-binding diversity and high affinity, and undergo large conformational changes in response to ligand binding. The development of these protein switches has yielded insights into the design of protein-based biosensors, particularly in the area of allosteric domain fusions. Here, recent protein engineering approaches for expanding the versatility of protein switches are reviewed, with an emphasis on studies that used PBPs to generate novel switches through protein domain insertion.
Collapse
|
4
|
Abdallah W, Solanki K, Banta S. Insertion of a Calcium-Responsive β-Roll Domain into a Thermostable Alcohol Dehydrogenase Enables Tunable Control over Cofactor Selectivity. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Walaa Abdallah
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kusum Solanki
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Budiardjo SJ, Licknack TJ, Cory MB, Kapros D, Roy A, Lovell S, Douglas J, Karanicolas J. Full and Partial Agonism of a Designed Enzyme Switch. ACS Synth Biol 2016; 5:1475-1484. [PMID: 27389009 DOI: 10.1021/acssynbio.6b00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical biology has long sought to build protein switches for use in molecular diagnostics, imaging, and synthetic biology. The overarching challenge for any type of engineered protein switch is the ability to respond in a selective and predictable manner that caters to the specific environments and time scales needed for the application at hand. We previously described a general method to design switchable proteins, called "chemical rescue of structure", that builds de novo allosteric control sites directly into a protein's functional domain. This approach entails first carving out a buried cavity in a protein via mutation, such that the protein's structure is disrupted and activity is lost. An exogenous ligand is subsequently added to substitute for the atoms that were removed by mutation, restoring the protein's structure and thus its activity. Here, we begin to ask what principles dictate such switches' response to different activating ligands. Using a redesigned β-glycosidase enzyme as our model system, we find that the designed effector site is quite malleable and can accommodate both larger and smaller ligands, but that optimal rescue comes only from a ligand that perfectly replaces the deleted atoms. Guided by these principles, we then altered the shape of this cavity by using different cavity-forming mutations, and predicted different ligands that would better complement these new cavities. These findings demonstrate how the protein switch's response can be tuned via small changes to the ligand with respect to the binding cavity, and ultimately enabled us to design an improved switch. We anticipate that these insights will help enable the design of future systems that tune other aspects of protein activity, whereby, like evolved protein receptors, remolding the effector site can also adjust additional outputs such as substrate selectivity and activation of downstream signaling pathways.
Collapse
Affiliation(s)
- S. Jimmy Budiardjo
- Center for Computational Biology, ‡Department of Molecular
Biosciences, §High Throughput Screening
Laboratory, ∥Protein Structure Laboratory, ⊥Molecular Structures Group The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Timothy J. Licknack
- Center for Computational Biology, ‡Department of Molecular
Biosciences, §High Throughput Screening
Laboratory, ∥Protein Structure Laboratory, ⊥Molecular Structures Group The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Michael B. Cory
- Center for Computational Biology, ‡Department of Molecular
Biosciences, §High Throughput Screening
Laboratory, ∥Protein Structure Laboratory, ⊥Molecular Structures Group The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Dora Kapros
- Center for Computational Biology, ‡Department of Molecular
Biosciences, §High Throughput Screening
Laboratory, ∥Protein Structure Laboratory, ⊥Molecular Structures Group The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Anuradha Roy
- Center for Computational Biology, ‡Department of Molecular
Biosciences, §High Throughput Screening
Laboratory, ∥Protein Structure Laboratory, ⊥Molecular Structures Group The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Scott Lovell
- Center for Computational Biology, ‡Department of Molecular
Biosciences, §High Throughput Screening
Laboratory, ∥Protein Structure Laboratory, ⊥Molecular Structures Group The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Justin Douglas
- Center for Computational Biology, ‡Department of Molecular
Biosciences, §High Throughput Screening
Laboratory, ∥Protein Structure Laboratory, ⊥Molecular Structures Group The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - John Karanicolas
- Center for Computational Biology, ‡Department of Molecular
Biosciences, §High Throughput Screening
Laboratory, ∥Protein Structure Laboratory, ⊥Molecular Structures Group The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| |
Collapse
|