1
|
Narkhede YB, Bhardwaj A, Motsa BB, Saxena R, Sharma T, Chapagain PP, Stahelin RV, Wiest O. Elucidating Residue-Level Determinants Affecting Dimerization of Ebola Virus Matrix Protein Using High-Throughput Site Saturation Mutagenesis and Biophysical Approaches. J Phys Chem B 2023; 127:6449-6461. [PMID: 37458567 DOI: 10.1021/acs.jpcb.3c01759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The Ebola virus (EBOV) is a filamentous virus that acquires its lipid envelope from the plasma membrane of the host cell it infects. EBOV assembly and budding from the host cell plasma membrane are mediated by a peripheral protein, known as the matrix protein VP40. VP40 is a 326 amino acid protein with two domains that are loosely linked. The VP40 N-terminal domain (NTD) contains a hydrophobic α-helix, which mediates VP40 dimerization. The VP40 C-terminal domain has a cationic patch, which mediates interactions with anionic lipids and a hydrophobic region that mediates VP40 dimer-dimer interactions. The VP40 dimer is necessary for trafficking to the plasma membrane inner leaflet and interactions with anionic lipids to mediate the VP40 assembly and oligomerization. Despite significant structural information available on the VP40 dimer structure, little is known on how the VP40 dimer is stabilized and how residues outside the NTD hydrophobic portion of the α-helical dimer interface contribute to dimer stability. To better understand how VP40 dimer stability is maintained, we performed computational studies using per-residue energy decomposition and site saturation mutagenesis. These studies revealed a number of novel keystone residues for VP40 dimer stability just adjacent to the α-helical dimer interface as well as distant residues in the VP40 CTD that can stabilize the VP40 dimer form. Experimental studies with representative VP40 mutants in vitro and in cells were performed to test computational predictions that reveal residues that alter VP40 dimer stability. Taken together, these studies provide important biophysical insights into VP40 dimerization and may be useful in strategies to weaken or alter the VP40 dimer structure as a means of inhibiting the EBOV assembly.
Collapse
Affiliation(s)
- Yogesh B Narkhede
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Atul Bhardwaj
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Balindile B Motsa
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Roopashi Saxena
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | - Robert V Stahelin
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Broni E, Ashley C, Adams J, Manu H, Aikins E, Okom M, Miller WA, Wilson MD, Kwofie SK. Cheminformatics-Based Study Identifies Potential Ebola VP40 Inhibitors. Int J Mol Sci 2023; 24:ijms24076298. [PMID: 37047270 PMCID: PMC10094735 DOI: 10.3390/ijms24076298] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina’s capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of −8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 μM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (−46.97 to −118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Joseph Adams
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Hammond Manu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Ebenezer Aikins
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Mary Okom
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| |
Collapse
|
3
|
Liu X, Pappas EJ, Husby ML, Motsa BB, Stahelin RV, Pienaar E. Mechanisms of phosphatidylserine influence on viral production: A computational model of Ebola virus matrix protein assembly. J Biol Chem 2022; 298:102025. [PMID: 35568195 PMCID: PMC9218153 DOI: 10.1016/j.jbc.2022.102025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Ebola virus (EBOV) infections continue to pose a global public health threat, with high mortality rates and sporadic outbreaks in Central and Western Africa. A quantitative understanding of the key processes driving EBOV assembly and budding could provide valuable insights to inform drug development. Here, we use a computational model to evaluate EBOV matrix assembly. Our model focuses on the assembly kinetics of VP40, the matrix protein in EBOV, and its interaction with phosphatidylserine (PS) in the host cell membrane. It has been shown that mammalian cells transfected with VP40-expressing plasmids are capable of producing virus-like particles (VLPs) that closely resemble EBOV virions. Previous studies have also shown that PS levels in the host cell membrane affects VP40 association with the plasma membrane inner leaflet and that lower membrane PS levels result in lower VLP production. Our computational findings indicate that PS may also have a direct influence on VP40 VLP assembly and budding, where a higher PS level will result in a higher VLP budding rate and filament dissociation rate. Our results further suggest that the assembly of VP40 filaments follow the nucleation-elongation theory, where initialization and oligomerization of VP40 are two distinct steps in the assembly process. Our findings advance the current understanding of VP40 VLP formation by identifying new possible mechanisms of PS influence on VP40 assembly. We propose that these mechanisms could inform treatment strategies targeting PS alone or in combination with other VP40 assembly steps.
Collapse
Affiliation(s)
- Xiao Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Ethan J Pappas
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Monica L Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Balindile B Motsa
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
4
|
Characterization of Bovine Foamy Virus Gag Late Assembly Domain Motifs and Their Role in Recruiting ESCRT for Budding. Viruses 2022; 14:v14030522. [PMID: 35336929 PMCID: PMC8952818 DOI: 10.3390/v14030522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
A large number of retroviruses, such as human immunodeficiency virus (HIV) and prototype foamy virus (PFV), recruit the endosomal sorting complex required for transport (ESCRT) through the late domain (L domain) on the Gag structural protein for virus budding. However, little is known about the molecular mechanism of bovine foamy virus (BFV) budding. In the present study, we report that BFV recruits ESCRT for budding through the L domain of Gag. Specifically, knockdown of VPS4 (encoding vacuolar protein sorting 4), ALIX (encoding ALG-2-interacting protein X), and TSG101 (encoding tumor susceptibility 101) indicated that BFV uses ESCRT for budding. Mutational analysis of BFV Gag (BGag) showed that, in contrast to the classical L domain motifs, BGag contains two motifs, P56LPI and Y103GPL, with L domain functions. In addition, the two L domains are necessary for the cytoplasmic localization of BGag, which is important for effective budding. Furthermore, we demonstrated that the functional site of Alix is V498 in the V domain and the functional site of Tsg101 is N69 in the UBC-like domain for BFV budding. Taken together, these results demonstrate that BFV recruits ESCRT for budding through the PLPI and YGPL L domain motifs in BGag.
Collapse
|
5
|
Bhattarai N, Pavadai E, Pokhrel R, Baral P, Hossen L, Stahelin RV, Chapagain PP, Gerstman BS. Ebola virus protein VP40 binding to Sec24c for transport to the plasma membrane. Proteins 2022; 90:340-350. [PMID: 34431571 PMCID: PMC8738135 DOI: 10.1002/prot.26221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
Outbreaks of the Ebola virus (EBOV) continue to occur and while a vaccine and treatment are now available, there remains a dearth of options for those who become sick with EBOV disease. An understanding at the atomic and molecular level of the various steps in the EBOV replication cycle can provide molecular targets for disrupting the virus. An important step in the EBOV replication cycle is the transport of EBOV structural matrix VP40 protein molecules to the plasma membrane inner leaflet, which involves VP40 binding to the host cell's Sec24c protein. Though some VP40 residues involved in the binding are known, the molecular details of VP40-Sec24c binding are not known. We use various molecular computational techniques to investigate the molecular details of how EBOV VP40 binds with the Sec24c complex of the ESCRT-I pathway. We employed different docking programs to identify the VP40-binding site on Sec24c and then performed molecular dynamics simulations to determine the atomic details and binding interactions of the complex. We also investigated how the inter-protein interactions of the complex are affected upon mutations of VP40 amino acids in the Sec24c-binding region. Our results provide a molecular basis for understanding previous coimmunoprecipitation experimental studies. In addition, we found that VP40 can bind to a site on Sec24c that can also bind Sec23 and suggests that VP40 may use the COPII transport mechanism in a manner that may not need the Sec23 protein in order for VP40 to be transported to the plasma membrane.
Collapse
Affiliation(s)
- Nisha Bhattarai
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Elumalai Pavadai
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Rudramani Pokhrel
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Prabin Baral
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Lokman Hossen
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Robert V. Stahelin
- Department of Medicinal Chemistry & Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette IN 47906
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Bernard S. Gerstman
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
7
|
Johnson KA, Bhattarai N, Budicini MR, LaBonia CM, Baker SCB, Gerstman BS, Chapagain PP, Stahelin RV. Cysteine Mutations in the Ebolavirus Matrix Protein VP40 Promote Phosphatidylserine Binding by Increasing the Flexibility of a Lipid-Binding Loop. Viruses 2021; 13:1375. [PMID: 34372582 PMCID: PMC8310056 DOI: 10.3390/v13071375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Ebolavirus (EBOV) is a negative-sense RNA virus that causes severe hemorrhagic fever in humans. The matrix protein VP40 facilitates viral budding by binding to lipids in the host cell plasma membrane and driving the formation of filamentous, pleomorphic virus particles. The C-terminal domain of VP40 contains two highly-conserved cysteine residues at positions 311 and 314, but their role in the viral life cycle is unknown. We therefore investigated the properties of VP40 mutants in which the conserved cysteine residues were replaced with alanine. The C311A mutation significantly increased the affinity of VP40 for membranes containing phosphatidylserine (PS), resulting in the assembly of longer virus-like particles (VLPs) compared to wild-type VP40. The C314A mutation also increased the affinity of VP40 for membranes containing PS, albeit to a lesser degree than C311A. The double mutant behaved in a similar manner to the individual mutants. Computer modeling revealed that both cysteine residues restrain a loop segment containing lysine residues that interact with the plasma membrane, but Cys311 has the dominant role. Accordingly, the C311A mutation increases the flexibility of this membrane-binding loop, changes the profile of hydrogen bonding within VP40 and therefore binds to PS with greater affinity. This is the first evidence that mutations in VP40 can increase its affinity for biological membranes and modify the length of Ebola VLPs. The Cys311 and Cys314 residues therefore play an important role in dynamic interactions at the plasma membrane by modulating the ability of VP40 to bind PS.
Collapse
Affiliation(s)
- Kristen A. Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (K.A.J.); (M.R.B.); (C.M.L.); (S.C.B.B.)
| | - Nisha Bhattarai
- Department of Physics, Florida International University, Miami, FL 33199, USA; (N.B.); (B.S.G.); (P.P.C.)
| | - Melissa R. Budicini
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (K.A.J.); (M.R.B.); (C.M.L.); (S.C.B.B.)
| | - Carolyn M. LaBonia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (K.A.J.); (M.R.B.); (C.M.L.); (S.C.B.B.)
| | - Sarah Catherine B. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (K.A.J.); (M.R.B.); (C.M.L.); (S.C.B.B.)
| | - Bernard S. Gerstman
- Department of Physics, Florida International University, Miami, FL 33199, USA; (N.B.); (B.S.G.); (P.P.C.)
- The Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA; (N.B.); (B.S.G.); (P.P.C.)
- The Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Delre P, Alberga D, Gijsbers A, Sánchez-Puig N, Nicolotti O, Saviano M, Siliqi D, Mangiatordi GF. Exploring the role of elongation Factor-Like 1 (EFL1) in Shwachman-Diamond syndrome through molecular dynamics. J Biomol Struct Dyn 2020; 38:5219-5229. [PMID: 31838967 DOI: 10.1080/07391102.2019.1704883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shwachman-Diamond Syndrome (SDS) is an autosomal recessive disorder whose patients present mutations in two ribosome assembly proteins, the Shwachman-Bodian-Diamond Syndrome protein (SBDS) and the Elongation Factor-Like 1 (EFL1). Due to the lack of knowledge of the molecular mechanisms responsible for SDS pathogenesis, current therapy is nonspecific and focuses only at alleviating the symptoms. Building on the recent observation that EFL1 single-point mutations clinically manifest as SDS-like phenotype, we carried out comparative Molecular Dynamics (MD) simulations on three mutants, T127A, M882K and R1095Q and wild type EFL1. As supported by small angle X-ray scattering experiments, the obtained data improve the static EFL1 model resulting from the Cryo-electron microscopy and clearly show that all the mutants experience a peculiar rotation, around the hinge region, of domain IV with respect to domains I and II leading to a different conformation respect to that of wild type protein. This study supports the notion that EFL1 function is governed by an allosteric mechanism involving the concerted action of GTPase domain (domain I) and the domain IV and can help point towards new approaches to SDS treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pietro Delre
- Dipartimento di Chimica, Università Degli Studi di Bari "Aldo Moro", Bari, Italy.,Consiglio Nazionale Delle Ricerche, Istituto di Cristallografia, Bari, Italy
| | | | - Abril Gijsbers
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Nuria Sánchez-Puig
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze Del Farmaco, Università̀ Degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Michele Saviano
- Consiglio Nazionale Delle Ricerche, Istituto di Cristallografia, Bari, Italy
| | - Dritan Siliqi
- Consiglio Nazionale Delle Ricerche, Istituto di Cristallografia, Bari, Italy
| | | |
Collapse
|
9
|
A Conserved Tryptophan in the Ebola Virus Matrix Protein C-Terminal Domain Is Required for Efficient Virus-Like Particle Formation. Pathogens 2020; 9:pathogens9050402. [PMID: 32455873 PMCID: PMC7281420 DOI: 10.3390/pathogens9050402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
The Ebola virus (EBOV) harbors seven genes, one of which is the matrix protein eVP40, a peripheral protein that is sufficient to induce the formation of virus-like particles from the host cell plasma membrane. eVP40 can form different structures to fulfil different functions during the viral life cycle, although the structural dynamics of eVP40 that warrant dimer, hexamer, and octamer formation are still poorly understood. eVP40 has two conserved Trp residues at positions 95 and 191. The role of Trp95 has been characterized in depth as it serves as an important residue in eVP40 oligomer formation. To gain insight into the functional role of Trp191 in eVP40, we prepared mutations of Trp191 (W191A or W191F) to determine the effects of mutation on eVP40 plasma membrane localization and budding as well as eVP40 oligomerization. These in vitro and cellular experiments were complemented by molecular dynamics simulations of the wild-type (WT) eVP40 structure versus that of W191A. Taken together, Trp is shown to be a critical amino acid at position 191 as mutation to Ala reduces the ability of VP40 to localize to the plasma membrane inner leaflet and form new virus-like particles. Further, mutation of Trp191 to Ala or Phe shifted the in vitro equilibrium to the octamer form by destabilizing Trp191 interactions with nearby residues. This study has shed new light on the importance of interdomain interactions in stability of the eVP40 structure and the critical nature of timing of eVP40 oligomerization for plasma membrane localization and viral budding.
Collapse
|
10
|
Buzon P, Ruiz-Sanz J, Martinez JC, Luque I. Stability, conformational plasticity, oligomerization behaviour and equilibrium unfolding intermediates of the Ebola virus matrix protein VP40. J Biomol Struct Dyn 2019; 38:4289-4303. [PMID: 31570067 DOI: 10.1080/07391102.2019.1671226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pedro Buzon
- Faculty of Sciences, Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Javier Ruiz-Sanz
- Faculty of Sciences, Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Jose C Martinez
- Faculty of Sciences, Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Irene Luque
- Faculty of Sciences, Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Brandt J, Wendt L, Hoenen T. Structure and functions of the Ebola virus matrix protein VP40. Future Virol 2019. [DOI: 10.2217/fvl-2018-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The matrix protein VP40 of the highly pathogenic Ebola virus (EBOV), a member of the filovirus family, is the most abundant protein in EBOV virions. During the viral life cycle it mediates assembly and budding from the host cell, and is responsible for the characteristic filamentous shape of EBOV particles. In addition to this classical function as a matrix protein, VP40 was also shown to have a regulatory function in viral transcription. To enable these distinct functions, VP40 can adopt different oligomeric states, in particular, dimers, hexamers and ring-like octameric RNA-binding structures. This review describes the properties and functions of the EBOV matrix protein VP40 and how these different conformations of VP40 contribute to its diverse functions.
Collapse
Affiliation(s)
- Janine Brandt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald – Insel Riems, Germany
| | - Lisa Wendt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald – Insel Riems, Germany
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald – Insel Riems, Germany
| |
Collapse
|
12
|
Saranya V, Shankar R, Vijayakumar S. Structural exploration of viral matrix protein 40 interaction with the transition metal ions (Ag+ and Cu2+). J Biomol Struct Dyn 2018; 37:2875-2896. [DOI: 10.1080/07391102.2018.1498803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- V. Saranya
- Department of Physics, Bharathiar University, Coimbatore, India
| | - R. Shankar
- Department of Physics, Bharathiar University, Coimbatore, India
| | - S. Vijayakumar
- Department of Medical Physics, Bharathiar University, Coimbatore, India
| |
Collapse
|
13
|
Pavadai E, Gerstman BS, Chapagain PP. A cylindrical assembly model and dynamics of the Ebola virus VP40 structural matrix. Sci Rep 2018; 8:9776. [PMID: 29950600 PMCID: PMC6021417 DOI: 10.1038/s41598-018-28077-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/14/2018] [Indexed: 12/01/2022] Open
Abstract
The Ebola filovirus causes severe hemorrhagic fever with a high fatality rate in humans. The primary structural matrix protein VP40 displays transformer-protein characteristics and exists in different conformational and oligomeric states. VP40 plays crucial roles in viral assembly and budding at the plasma membrane of the infected cells and is capable of forming virus-like particles without the need for other Ebola proteins. However, no experimental three-dimensional structure for any filovirus VP40 cylindrical assembly matrix is currently available. Here, we use a protein-protein docking approach to develop cylindrical assembly models for an Ebola virion and also for a smaller structural matrix that does not contain genetic material. These models match well with the 2D averages of cryo-electron tomograms of the authentic virion. We also used all-atom molecular dynamics simulations to investigate the stability and dynamics of the cylindrical models and the interactions between the side-by-side hexamers to determine the amino acid residues that are especially important for stabilizing the hexamers in the cylindrical ring configuration matrix assembly. Our models provide helpful information to better understand the assembly processes of filoviruses and such structural studies may also lead to the design and development of antiviral drugs.
Collapse
Affiliation(s)
- Elumalai Pavadai
- Department of Physics, Florida International University, Miami, Florida, 33199, USA.
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, Florida, 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida, 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, USA
| |
Collapse
|
14
|
Del Vecchio K, Frick CT, Gc JB, Oda SI, Gerstman BS, Saphire EO, Chapagain PP, Stahelin RV. A cationic, C-terminal patch and structural rearrangements in Ebola virus matrix VP40 protein control its interactions with phosphatidylserine. J Biol Chem 2018; 293:3335-3349. [PMID: 29348171 DOI: 10.1074/jbc.m117.816280] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/08/2018] [Indexed: 02/04/2023] Open
Abstract
Ebola virus (EBOV) is a filamentous lipid-enveloped virus that causes hemorrhagic fever with a high fatality rate. Viral protein 40 (VP40) is the major EBOV matrix protein and regulates viral budding from the plasma membrane. VP40 is a transformer/morpheein that can structurally rearrange its native homodimer into either a hexameric filament that facilitates viral budding or an RNA-binding octameric ring that regulates viral transcription. VP40 associates with plasma-membrane lipids such as phosphatidylserine (PS), and this association is critical to budding from the host cell. However, it is poorly understood how different VP40 structures interact with PS, what essential residues are involved in this association, and whether VP40 has true selectivity for PS among different glycerophospholipid headgroups. In this study, we used lipid-binding assays, MD simulations, and cellular imaging to investigate the molecular basis of VP40-PS interactions and to determine whether different VP40 structures (i.e. monomer, dimer, and octamer) can interact with PS-containing membranes. Results from quantitative analysis indicated that VP40 associates with PS vesicles via a cationic patch in the C-terminal domain (Lys224, 225 and Lys274, 275). Substitutions of these residues with alanine reduced PS-vesicle binding by >40-fold and abrogated VP40 localization to the plasma membrane. Dimeric VP40 had 2-fold greater affinity for PS-containing membranes than the monomer, whereas binding of the VP40 octameric ring was reduced by nearly 10-fold. Taken together, these results suggest the different VP40 structures known to form in the viral life cycle harbor different affinities for PS-containing membranes.
Collapse
Affiliation(s)
- Kathryn Del Vecchio
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Cary T Frick
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | | | | | | | - Erica Ollmann Saphire
- the Department of Immunology and Microbiology and.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Prem P Chapagain
- the Department of Physics and.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199
| | - Robert V Stahelin
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, .,the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
15
|
Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress. J Virol 2017; 91:JVI.00812-17. [PMID: 28768865 DOI: 10.1128/jvi.00812-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV) is a member of the Filoviridae family and the cause of hemorrhagic fever outbreaks. The EBOV VP40 (eVP40) matrix protein is the main driving force for virion assembly and budding. Indeed, expression of eVP40 alone in mammalian cells results in the formation and budding of virus-like particles (VLPs) which mimic the budding process and morphology of authentic, infectious EBOV. To complete the budding process, eVP40 utilizes its PPXY L-domain motif to recruit a specific subset of host proteins containing one or more modular WW domains that then function to facilitate efficient production and release of eVP40 VLPs. In this report, we identified additional host WW-domain interactors by screening for potential interactions between mammalian proteins possessing one or more WW domains and WT or PPXY mutant peptides of eVP40. We identified the HECT family E3 ubiquitin ligase WWP1 and all four of its WW domains as strong interactors with the PPXY motif of eVP40. The eVP40-WWP1 interaction was confirmed by both peptide pulldown and coimmunoprecipitation assays, which also demonstrated that modular WW domain 1 of WWP1 was most critical for binding to eVP40. Importantly, the eVP40-WWP1 interaction was found to be biologically relevant for VLP budding since (i) small interfering RNA (siRNA) knockdown of endogenous WWP1 resulted in inhibition of eVP40 VLP egress, (ii) coexpression of WWP1 and eVP40 resulted in ubiquitination of eVP40 and a subsequent increase in eVP40 VLP egress, and (iii) an enzymatically inactive mutant of WWP1 (C890A) did not ubiquitinate eVP40 or enhance eVP40 VLP egress. Last, our data show that ubiquitination of eVP40 by WWP1 enhances egress of VLPs and concomitantly decreases cellular levels of higher-molecular-weight oligomers of eVP40. In sum, these findings contribute to our fundamental understanding of the functional interplay between host E3 ligases, ubiquitination, and regulation of EBOV VP40-mediated egress.IMPORTANCE Ebola virus (EBOV) is a high-priority, emerging human pathogen that can cause severe outbreaks of hemorrhagic fever with high mortality rates. As there are currently no approved vaccines or treatments for EBOV, a better understanding of the biology and functions of EBOV-host interactions that promote or inhibit viral budding is warranted. Here, we describe a physical and functional interaction between EBOV VP40 (eVP40) and WWP1, a host E3 ubiquitin ligase that ubiquitinates VP40 and regulates VLP egress. This viral PPXY-host WW domain-mediated interaction represents a potential new target for host-oriented inhibitors of EBOV egress.
Collapse
|
16
|
Bhattarai N, Gc JB, Gerstman BS, Stahelin RV, Chapagain PP. Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer. RSC Adv 2017; 7:22741-22748. [PMID: 28580138 PMCID: PMC5436087 DOI: 10.1039/c7ra02940c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 04/19/2017] [Indexed: 11/21/2022] Open
Abstract
The membrane binding interface of the Marburg virus protein mVP40 dimer differs from that of the Ebola virus eVP40 dimer but membrane binding allows conformational changes in mVP40 that makes it structurally similar to the eVP40 dimer.
Filovirus infections cause hemorrhagic fever in humans and non-human primates that often results in high fatality rates. The Marburg virus is a lipid-enveloped virus from the Filoviridae family and is closely related to the Ebola virus. The viral matrix layer underneath the lipid envelope is formed by the matrix protein VP40 (VP40), which is also involved in other functions during the viral life-cycle. As in the Ebola virus VP40 (eVP40), the recently determined X-ray crystal structure of the Marburg virus VP40 (mVP40) features loops containing cationic residues that form a lipid binding basic patch. However, the mVP40 basic patch is significantly flatter with a more extended surface than in eVP40, suggesting the possibility of differences in the plasma membrane interactions and phospholipid specificity between the VP40 dimers. In this paper, we report on molecular dynamics simulations that investigate the roles of various residues and lipid types in PM association as well as the conformational changes of the mVP40 dimer facilitated by membrane association. We compared the structural changes of the mVP40 dimer with the mVP40 dimer in both lipid free and membrane associated conditions. Despite the significant structural differences in the crystal structure, the Marburg VP40 dimer is found to adopt a configuration very similar to the Ebola VP40 dimer after associating with the membrane. This conformational rearrangement upon lipid binding allows Marburg VP40 to localize and stabilize at the membrane surface in a manner similar to the Ebola VP40 dimer. Consideration of the structural information in its lipid-interacting condition may be important in targeting mVP40 for novel drugs to inhibit viral budding from the plasma membrane.
Collapse
Affiliation(s)
- Nisha Bhattarai
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Jeevan B Gc
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, FL 33199, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, The Eck Institute for Global Health, The Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
17
|
Peng Y, Alexov E. Cofactors-loaded quaternary structure of lysine-specific demethylase 5C (KDM5C) protein: Computational model. Proteins 2016; 84:1797-1809. [PMID: 27696497 DOI: 10.1002/prot.25162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
The KDM5C gene (also known as JARID1C and SMCX) is located on the X chromosome and encodes a ubiquitously expressed 1560-aa protein, which plays an important role in lysine methylation (specifically reverses tri- and di-methylation of Lys4 of histone H3). Currently, 13 missense mutations in KDM5C have been linked to X-linked mental retardation. However, the molecular mechanism of disease is currently unknown due to the experimental difficulties in expressing such large protein and the lack of experimental 3D structure. In this work, we utilize homology modeling, docking, and experimental data to predict 3D structures of KDM5C domains and their mutual arrangement. The resulting quaternary structure includes KDM5C JmjN, ARID, PHD1, JmjC, ZF domains, substrate histone peptide, enzymatic cofactors, and DNA. The predicted quaternary structure was investigated with molecular dynamic simulation for its stability, and further analysis was carried out to identify features measured experimentally. The predicted structure of KDM5C was used to investigate the effects of disease-causing mutations and it was shown that the mutations alter domain stability and inter-domain interactions. The structural model reported in this work could prompt experimental investigations of KDM5C domain-domain interaction and exploration of undiscovered functionalities. Proteins 2016; 84:1797-1809. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yunhui Peng
- Department of Physics and Astronomy, Computational Biophysics and Bioinformatics, Clemson University, Clemson, South Carolina, 29634
| | - Emil Alexov
- Department of Physics and Astronomy, Computational Biophysics and Bioinformatics, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|