1
|
Allert MJ, Kumar S, Wang Y, Beese LS, Hellinga HW. Accurate Identification of Periplasmic Urea-binding Proteins by Structure- and Genome Context-assisted Functional Analysis. J Mol Biol 2024; 436:168780. [PMID: 39241982 DOI: 10.1016/j.jmb.2024.168780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
ABC transporters are ancient and ubiquitous nutrient transport systems in bacteria and play a central role in defining lifestyles. Periplasmic solute-binding proteins (SBPs) are components that deliver ligands to their translocation machinery. SBPs have diversified to bind a wide range of ligands with high specificity and affinity. However, accurate assignment of cognate ligands remains a challenging problem in SBPs. Urea metabolism plays an important role in the nitrogen cycle; anthropogenic sources account for more than half of global nitrogen fertilizer. We report identification of urea-binding proteins within a large SBP sequence family that encodes diverse functions. By combining genetic linkage between SBPs, ABC transporter components, enzymes or transcription factors, we accurately identified cognate ligands, as we verified experimentally by biophysical characterization of ligand binding and crystallographic determination of the urea complex of a thermostable urea-binding homolog. Using three-dimensional structure information, these functional assignments were extrapolated to other members in the sequence family lacking genetic linkage information, which revealed that only a fraction bind urea. Using the same combined approaches, we also inferred that other family members bind various short-chain amides, aliphatic amino acids (leucine, isoleucine, valine), γ-aminobutyrate, and as yet unknown ligands. Comparative structural analysis revealed structural adaptations that encode diversification in these SBPs. Systematic assignment of ligands to SBP sequence families is key to understanding bacterial lifestyles, and also provides a rich source of biosensors for clinical and environmental analysis, such as the thermostable urea-binding protein identified here.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Shivesh Kumar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, MO 63110, USA.
| | - You Wang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Schneider N, Gilreath K, Henriksen NM, Donaldson WA, Chaudhury S, St. Maurice M. Synthesis and Evaluation of 1,3-Disubstituted Imidazolidine-2,4,5-triones as Inhibitors of Pyruvate Carboxylase. ACS Med Chem Lett 2024; 15:1088-1093. [PMID: 39015262 PMCID: PMC11247459 DOI: 10.1021/acsmedchemlett.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Substituted imidazolidinetriones (IZTs) have been identified as potent inhibitors of pyruvate carboxylase (PC) through an in silico screening approach. Alkyl 2-(2,4,5-trioxo-3-substituted imidazolidin-1-yl)acetates (6i-6r) are the most potent of the series, with IC50 values between 3 and 12 μM, and several IZTs demonstrate high passive permeability across an artificial membrane. IZTs are mixed-type inhibitors with respect to pyruvate and noncompetitive with respect to ATP. This class of inhibitors appears to be selective for PC. Inhibitors in the IZT series do not inhibit the metalloenzymes human carbonic anhydrase II and matrix metalloprotease-12, and they do not inhibit the related biotin-dependent enzyme, guanidine carboxylase. Altogether, IZTs offer promise as PC inhibitors with potential downstream applications in cellular and in vivo systems.
Collapse
Affiliation(s)
- Nicholas
O. Schneider
- Department
of Biological Science, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Kendra Gilreath
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Niel M. Henriksen
- Atomwise,
Inc., 250 Sutter St, Suite 650, San Francisco, California 94108, United States
| | - William A. Donaldson
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Subhabrata Chaudhury
- Department
of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Martin St. Maurice
- Department
of Biological Science, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
3
|
Pei P, Aslam M, Wang H, Ye P, Li T, Liang H, Lin Q, Chen W, Du H. Diversity and ecological function of urease-producing bacteria in the cultivation environment of Gracilariopsis lemaneiformis. MICROBIAL ECOLOGY 2024; 87:35. [PMID: 38261068 PMCID: PMC10806000 DOI: 10.1007/s00248-023-02339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Urease-producing bacteria (UPB) provide inorganic nitrogen for primary producers by hydrolyzing urea, and play an important role in marine nitrogen cycle. However, there is still an incomplete understanding of UPB and their ecological functions in the cultivation environment of the red macroalgae Gracilariopsis lemaneiformis. This study comprehensively analyzed the diversity of culturable UPB and explored their effects on urea uptake by G. lemaneiformis. A total of 34 isolates belonging to four main bacterial phyla i.e. (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) were identified through 16S rRNA sequencing and were screened for UPB by urea agar chromogenic medium assay and ureC gene cloning. Our data revealed that only 8 strains contained urease. All of these UPB exhibited different urease activities, which were determined by the Berthelot reaction colorimetry assay. Additionally, the UPB strain (G13) isolated from G. lemaneiformis with higher urease activity was selected for co-culture with G. lemaneiformis to explore its role in promoting or inhibiting nitrogen uptake by macroalgae. The results showed a significant increase in urea consumption in the culture medium and the total cellular nitrogen in G. lemaneiformis in the UPB-co culture group compared to the sterile group. This suggests that the selected UPB strain positively influences nitrogen uptake by G. lemaneiformis. Similarly, isotopic assays revealed that the δ15N content of G. lemaneiformis was significantly higher in the UPB-co culture than in the control group, where δ15N-urea was the only nitrogen source in the culture medium. This indicates that the UPB helped G. lemaneiformis to absorb more nitrogen from urea. Moreover, the highest content of δ15N was found in G. lemaneiformis with epiphytic bacteria compared to sterilized (i.e. control), showing that epiphytic bacteria, along with UPB, have a compound effect in helping G. lemaneiformis absorb more nitrogen from urea. Taken together, these results provide unique insight into the ecological role of UPB and suggest that urease from macroalgae environment-associated bacteria might be an important player in marine nitrogen cycling.
Collapse
Affiliation(s)
- Pengbing Pei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
- Faculty of Marine Sciences, LUAWMS, Lasbela, 90150, Pakistan
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Peilin Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou, 515063, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Lin
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
4
|
Schneider NO, Tassoulas LJ, Zeng D, Laseke AJ, Reiter NJ, Wackett LP, Maurice MS. Solving the Conundrum: Widespread Proteins Annotated for Urea Metabolism in Bacteria Are Carboxyguanidine Deiminases Mediating Nitrogen Assimilation from Guanidine. Biochemistry 2020; 59:3258-3270. [PMID: 32786413 DOI: 10.1021/acs.biochem.0c00537] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Free guanidine is increasingly recognized as a relevant molecule in biological systems. Recently, it was reported that urea carboxylase acts preferentially on guanidine, and consequently, it was considered to participate directly in guanidine biodegradation. Urea carboxylase combines with allophanate hydrolase to comprise the activity of urea amidolyase, an enzyme predominantly found in bacteria and fungi that catalyzes the carboxylation and subsequent hydrolysis of urea to ammonia and carbon dioxide. Here, we demonstrate that urea carboxylase and allophanate hydrolase from Pseudomonas syringae are insufficient to catalyze the decomposition of guanidine. Rather, guanidine is decomposed to ammonia through the combined activities of urea carboxylase, allophanate hydrolase, and two additional proteins of the DUF1989 protein family, expansively annotated as urea carboxylase-associated family proteins. These proteins comprise the subunits of a heterodimeric carboxyguanidine deiminase (CgdAB), which hydrolyzes carboxyguanidine to N-carboxyurea (allophanate). The genes encoding CgdAB colocalize with genes encoding urea carboxylase and allophanate hydrolase. However, 25% of urea carboxylase genes, including all fungal urea amidolyases, do not colocalize with cgdAB. This subset of urea carboxylases correlates with a notable Asp to Asn mutation in the carboxyltransferase active site. Consistent with this observation, we demonstrate that fungal urea amidolyase retains a strong substrate preference for urea. The combined activities of urea carboxylase, carboxyguanidine deiminase and allophanate hydrolase represent a newly recognized pathway for the biodegradation of guanidine. These findings reinforce the relevance of guanidine as a biological metabolite and reveal a broadly distributed group of enzymes that act on guanidine in bacteria.
Collapse
Affiliation(s)
- Nicholas O Schneider
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Lambros J Tassoulas
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108-6106, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108-6106, United States
| | - Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Amanda J Laseke
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108-6106, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108-6106, United States
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
5
|
Arora Verasztó H, Logotheti M, Albrecht R, Leitner A, Zhu H, Hartmann MD. Architecture and functional dynamics of the pentafunctional AROM complex. Nat Chem Biol 2020; 16:973-978. [PMID: 32632294 DOI: 10.1038/s41589-020-0587-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
The AROM complex is a multifunctional metabolic machine with ten enzymatic domains catalyzing the five central steps of the shikimate pathway in fungi and protists. We determined its crystal structure and catalytic behavior, and elucidated its conformational space using a combination of experimental and computational approaches. We derived this space in an elementary approach, exploiting an abundance of conformational information from its monofunctional homologs in the Protein Data Bank. It demonstrates how AROM is optimized for spatial compactness while allowing for unrestricted conformational transitions and a decoupled functioning of its individual enzymatic entities. With this architecture, AROM poses a tractable test case for the effects of active site proximity on the efficiency of both natural metabolic systems and biotechnological pathway optimization approaches. We show that a mere colocalization of enzymes is not sufficient to yield a detectable improvement of metabolic throughput.
Collapse
Affiliation(s)
- Harshul Arora Verasztó
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Maria Logotheti
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Hongbo Zhu
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
6
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
7
|
Veaudor T, Cassier-Chauvat C, Chauvat F. Genomics of Urea Transport and Catabolism in Cyanobacteria: Biotechnological Implications. Front Microbiol 2019; 10:2052. [PMID: 31551986 PMCID: PMC6737895 DOI: 10.3389/fmicb.2019.02052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are widely-diverse prokaryotes that colonize our planet. They use solar energy to assimilate huge amounts of atmospheric CO2 and produce a large part of the biomass and oxygen that sustain most life forms. Cyanobacteria are therefore increasingly studied for basic research objectives, as well as for the photosynthetic production of chemicals with industrial interests. One potential approach to reduce the cost of future bioproduction processes is to couple them with wastewater treatment, often polluted with urea, which in any case is cheaper than nitrate. As of yet, however, research has mostly focused on a very small number of model cyanobacteria growing on nitrate. Thus, the genetic inventory of the cyanobacterial phylum is still insufficiently employed to meaningfully select the right host for the right purpose. This review reports what is known about urea transport and catabolism in cyanobacteria, and what can be inferred from the comparative analysis of the publicly available genome sequence of the 308 cyanobacteria. We found that most cyanobacteria mostly harbor the genes encoding the urea catabolytic enzymes urease (ureABCDEFG), but not systematically, together with the urea transport (urtABCDE). These findings are consistent with the capacity of the few tested cyanobacteria that grow on urea as the sole nitrogen source. They also indicate that urease is important for the detoxification of internally generated urea (re-cycling its carbon and nitrogen). In contrast, several cyanobacteria have urtABCDE but not ureABCDEFG, suggesting that urtABCDE could operate in the transport of not only urea but also of other nutrients. Only four cyanobacteria appeared to have the genes encoding the urea carboxylase (uc) and allophanate hydrolase (ah) enzymes that sequentially catabolize urea. Three of these cyanobacteria belongs to the genera Gloeobacter and Gloeomargarita that have likely diverged early from other cyanobacteria, suggesting that the urea carboxylase and allophanate hydrolase enzymes appeared in cyanobacteria before urease.
Collapse
Affiliation(s)
- Théo Veaudor
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Yang H, Yu Y, Fu C, Chen F. Bacterial Acid Resistance Toward Organic Weak Acid Revealed by RNA-Seq Transcriptomic Analysis in Acetobacter pasteurianus. Front Microbiol 2019; 10:1616. [PMID: 31447789 PMCID: PMC6691051 DOI: 10.3389/fmicb.2019.01616] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/28/2019] [Indexed: 11/29/2022] Open
Abstract
Under extreme acidic environments, bacteria exploit several acid resistance (AR) mechanisms for enhancing their survival, which is concerned with several aspects, such as issues in human health and fermentation for acidic products. Currently, knowledge of bacterial AR mainly comes from the strong acid (such as hydrochloric acid) stresses, whereas AR mechanisms against organic weak acids (such as acetic acid), which are indeed encountered by bacteria, are less understood. Acetic acid bacteria (AAB), with the ability to produce acetic acid up to 20 g/100 mL, possess outstanding acetic acid tolerance, which is conferred by their unique AR mechanisms, including pyrroloquinoline quinine-dependent alcohol dehydrogenase, acetic acid assimilation and molecular chaperons. The distinguished AR of AAB toward acetic acid may provide a paradigm for research in bacterial AR against weak organic acids. In order to understand AAB’s AR mechanism more holistically, omics approaches have been employed in the corresponding field. However, the currently reported transcriptomic study was processed under a low-acidity (1 g/100 mL) environment, which could not reflect the general conditions that AAB are usually faced with. This study performed RNA-Seq transcriptomic analysis investigating AR mechanisms in Acetobacter pasteurianus CGMCC 1.41, a widely used vinegar-brewing AAB strain, at different stages of fermentation, namely, under different acetic acid concentrations (from 0.6 to 6.03 g/100 mL). The results demonstrated the even and clustered genomic distribution of up- and down-regulated genes, respectively. Difference in AR between AAB and other microorganisms was supported by the down-regulation of urea degradation and trehalose synthesis-related genes in response to acetic acid. Detailed analysis reflected the role of ethanol respiration as the main energy source and the limited effect of acetic acid assimilation on AR during fermentation as well as the competition between ethanol respiratory chain and NADH, succinate dehydrogenase-based common respiratory chain. Molecular chaperons contribute to AR, too, but their regulatory mechanisms require further investigation. Moreover, pathways of glucose catabolism and fatty acid biosynthesis are also related to AR. Finally, 2-methylcitrate cycle was proposed as an AR mechanism in AAB for the first time. This study provides new insight into AR mechanisms of AAB, and it also indicates the existence of numerous undiscovered AR mechanisms.
Collapse
Affiliation(s)
- Haoran Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjian Yu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Caixia Fu
- Hubei Tulaohan Flavouring and Food Co., Ltd., Yichang, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Liu Y, Budelier MM, Stine K, St Maurice M. Allosteric regulation alters carrier domain translocation in pyruvate carboxylase. Nat Commun 2018; 9:1384. [PMID: 29643369 PMCID: PMC5895798 DOI: 10.1038/s41467-018-03814-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/14/2018] [Indexed: 11/28/2022] Open
Abstract
Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate. The reaction occurs in two separate catalytic domains, coupled by the long-range translocation of a biotinylated carrier domain (BCCP). Here, we use a series of hybrid PC enzymes to examine multiple BCCP translocation pathways in PC. These studies reveal that the BCCP domain of PC adopts a wide range of translocation pathways during catalysis. Furthermore, the allosteric activator, acetyl CoA, promotes one specific intermolecular carrier domain translocation pathway. These results provide a basis for the ordered thermodynamic state and the enhanced carboxyl group transfer efficiency in the presence of acetyl CoA, and reveal that the allosteric effector regulates enzyme activity by altering carrier domain movement. Given the similarities with enzymes involved in the modular synthesis of natural products, the allosteric regulation of carrier domain movements in PC is likely to be broadly applicable to multiple important enzyme systems. Carrier domain enzymes accomplish catalysis by physically transporting intermediates long distances between remote active sites. Here the authors describe a wide range of catalytically productive translocation events during catalysis by pyruvate carboxylase and suggest a basis for its allosteric activation.
Collapse
Affiliation(s)
- Yumeng Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Melissa M Budelier
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Katelyn Stine
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| |
Collapse
|
10
|
Structure and function of urea amidolyase. Biosci Rep 2018; 38:BSR20171617. [PMID: 29263142 PMCID: PMC5770610 DOI: 10.1042/bsr20171617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022] Open
Abstract
Urea is the degradation product of a wide range of nitrogen containing bio-molecules. Urea amidolyase (UA) catalyzes the conversion of urea to ammonium, the essential first step in utilizing urea as a nitrogen source. It is widely distributed in fungi, bacteria and other microorganisms, and plays an important role in nitrogen recycling in the biosphere. UA is composed of urea carboxylase (UC) and allophanate hydrolase (AH) domains, which catalyze sequential reactions. In some organisms UC and AH are encoded by separated genes. We present here structure of the Kluyveromyces lactis UA (KlUA). The structure revealed that KlUA forms a compact homo-dimer with a molecular weight of 400 kDa. Structure inspired biochemical experiments revealed the mechanism of its reaction intermediate translocation, and that the KlUA holo-enzyme formation is essential for its optimal activity. Interestingly, previous studies and ours suggest that UC and AH encoded by separated genes probably do not form a KlUA-like complex, consequently they might not catalyze the urea to ammonium conversion as efficiently.
Collapse
|
11
|
Niehaus TD, Elbadawi-Sidhu M, de Crécy-Lagard V, Fiehn O, Hanson AD. Discovery of a widespread prokaryotic 5-oxoprolinase that was hiding in plain sight. J Biol Chem 2017; 292:16360-16367. [PMID: 28830929 DOI: 10.1074/jbc.m117.805028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Indexed: 11/06/2022] Open
Abstract
5-Oxoproline (OP) is well-known as an enzymatic intermediate in the eukaryotic γ-glutamyl cycle, but it is also an unavoidable damage product formed spontaneously from glutamine and other sources. Eukaryotes metabolize OP via an ATP-dependent 5-oxoprolinase; most prokaryotes lack homologs of this enzyme (and the γ-glutamyl cycle) but are predicted to have some way to dispose of OP if its spontaneous formation in vivo is significant. Comparative analysis of prokaryotic genomes showed that the gene encoding pyroglutamyl peptidase, which removes N-terminal OP residues, clusters in diverse genomes with genes specifying homologs of a fungal lactamase (renamed prokaryotic 5-oxoprolinase A, pxpA) and homologs of allophanate hydrolase subunits (renamed pxpB and pxpC). Inactivation of Bacillus subtilis pxpA, pxpB, or pxpC genes slowed growth, caused OP accumulation in cells and medium, and prevented use of OP as a nitrogen source. Assays of cell lysates showed that ATP-dependent 5-oxoprolinase activity disappeared when pxpA, pxpB, or pxpC was inactivated. 5-Oxoprolinase activity could be reconstituted in vitro by mixing recombinant B. subtilis PxpA, PxpB, and PxpC proteins. In addition, overexpressing Escherichia coli pxpABC genes in E. coli increased 5-oxoprolinase activity in lysates ≥1700-fold. This work shows that OP is a major universal metabolite damage product and that OP disposal systems are common in all domains of life. Furthermore, it illustrates how easily metabolite damage and damage-control systems can be overlooked, even for central metabolites in model organisms.
Collapse
Affiliation(s)
- Thomas D Niehaus
- From the Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611,
| | - Mona Elbadawi-Sidhu
- the West Coast Metabolomics Center, University of California Davis, Davis, California 95616, and
| | - Valérie de Crécy-Lagard
- the Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611
| | - Oliver Fiehn
- the West Coast Metabolomics Center, University of California Davis, Davis, California 95616, and
| | - Andrew D Hanson
- From the Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611,
| |
Collapse
|