1
|
Tang X, Feng H, Li Y, Miao T, Gao H, Zhao R, Huang Y. Bioinspired peptide sensors with tailorable structure for specific and in-situ tracking of Hg 2+ biodistribution in living cells upon acute exposure. Biosens Bioelectron 2025; 269:116940. [PMID: 39561693 DOI: 10.1016/j.bios.2024.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Metal-biomolecule interactions that are ubiquitous in nature provide fundamental knowledge and rich structural motifs for the development of functional molecules and smart sensors. In this work, inspired by the active sites in metalloproteins, a biomimetic peptide sensor was designed for the selective recognition and activatable sensing of Hg2+ in living biosystems. Tetraphenylethylene (TPE) with typical aggregation-induced emission (AIE) behavior, was introduced as the activatable signal transducer to enable high signal-to-background signaling. The tailorable side chains and flexible peptide linkage were exploited to tune the coordination affinity, selectivity, and fluorescence response toward Hg2+. Benefiting from the rapid response (1 min), high specificity and nanomolar sensitivity, the peptide sensor allows investigating the mechanism of acute toxicity of Hg2+. Capable of penetrating plasma membrane, the peptide sensor revealed the dosage-dependent and dynamic subcellular biodistribution behavior of Hg2+. The finding that Hg2+ preferentially accumulates and rapidly enriches in nucleoli of cells upon short exposure, evidences the adverse effect toward ribosome biogenesis and the resultant genetic deficiencies. These results highlight the peptide sensors as promising tools for not only on-site detection, but also studying the cell biology and toxicology of this metal ion in living biosystems.
Collapse
Affiliation(s)
- Xiongwei Tang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Miao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
An Y, Li B, Yu Y, Zhou Y, Yi J, Li L, Sun Y, Qiang Z, Liu Y, Wang P. A rapid and specific fluorescent probe based on aggregation-induced emission enhancement for mercury ion detection in living systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133331. [PMID: 38142657 DOI: 10.1016/j.jhazmat.2023.133331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Mercury is a harmful heavy metal that seriously threatens the environment and organisms. In this study, we combined the aggregation-induced emission mechanism and the advantages of peptides to design a novel tetraphenylene (TPE)-based peptide fluorescent probe, TPE-Cys-Pro-Gly-His (TPE-CPGH), in which the sulfhydryl group of Cys in the peptide chain and the imidazolium nitrogen provided by His were used to mimic the Hg2+ binding site of metalloproteins. The β-fold formed by Pro-Gly was used to promote the spatial coordination of the probe with Hg2+ and the formation of the coordination complex aggregates, these changes led to the "turn on" response to Hg2+. The detection of Hg2+ by TPE-CPGH not only showed high specificity and sensitivity (LOD=46.2 nM), but also had the advantages of fast response and applicability for detection over a wide pH range. Additionally, TPE-CPGH effectively detected Hg2+ in environmental samples, living cells and organisms due to its low cytotoxicity, high water solubility and cell membrane permeability. More interestingly, TPE-CPGH was also mitigated Hg2+ exposure-induced oxidative stress toxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Yong An
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Gansu Pharmaceutical Industry Innovation Research Institute, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Bo Li
- Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China
| | - Yongzhi Yu
- Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China
| | - Yucen Zhou
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Jianfeng Yi
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Lepeng Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Yongqiang Sun
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Zhengze Qiang
- Gansu Pharmaceutical Industry Innovation Research Institute, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China.
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, PR China.
| |
Collapse
|
3
|
Gao J, Li J, Zhang J, Sun Y, Ju X, Li W, Duan H, Xue Z, Sun L, Hussain Sahito J, Fu Z, Zhang X, Tang J. Identification of Novel QTL for Mercury Accumulation in Maize Using an Enlarged SNP Panel. Genes (Basel) 2024; 15:257. [PMID: 38397246 PMCID: PMC10888321 DOI: 10.3390/genes15020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Mercury (Hg) pollution not only poses a threat to the environment but also adversely affects the growth and development of plants, with potential repercussions for animals and humans through bioaccumulation in the food chain. Maize, a crucial source of food, industrial materials, and livestock feed, requires special attention in understanding the genetic factors influencing mercury accumulation. Developing maize varieties with low mercury accumulation is vital for both maize production and human health. In this study, a comprehensive genome-wide association study (GWAS) was conducted using an enlarged SNP panel comprising 1.25 million single nucleotide polymorphisms (SNPs) in 230 maize inbred lines across three environments. The analysis identified 111 significant SNPs within 78 quantitative trait loci (QTL), involving 169 candidate genes under the Q model. Compared to the previous study, the increased marker density and optimized statistical model led to the discovery of 74 additional QTL, demonstrating improved statistical power. Gene ontology (GO) enrichment analysis revealed that most genes participate in arsenate reduction and stress responses. Notably, GRMZM2G440968, which has been reported in previous studies, is associated with the significant SNP chr6.S_155668107 in axis tissue. It encodes a cysteine proteinase inhibitor, implying its potential role in mitigating mercury toxicity by inhibiting cysteine. Haplotype analyses provided further insights, indicating that lines carrying hap3 exhibited the lowest mercury content compared to other haplotypes. In summary, our study significantly enhances the statistical power of GWAS, identifying additional genes related to mercury accumulation and metabolism. These findings offer valuable insights into unraveling the genetic basis of mercury content in maize and contribute to the development of maize varieties with low mercury accumulation.
Collapse
Affiliation(s)
- Jionghao Gao
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Jianxin Li
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Jihong Zhang
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Yan Sun
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Xiaolong Ju
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Wenlong Li
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Haiyang Duan
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Zhengjie Xue
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Li Sun
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Javed Hussain Sahito
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Xuehai Zhang
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (J.G.); (J.L.); (J.Z.); (Y.S.); (X.J.); (W.L.); (H.D.); (Z.X.); (L.S.); (J.H.S.); (Z.F.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
4
|
Nafaee ZH, Egyed V, Jancsó A, Tóth A, Gerami AM, Dang TT, Heiniger‐Schell J, Hemmingsen L, Hunyadi‐Gulyás É, Peintler G, Gyurcsik B. Revisiting the hydrolysis of ampicillin catalyzed by Temoneira-1 β-lactamase, and the effect of Ni(II), Cd(II) and Hg(II). Protein Sci 2023; 32:e4809. [PMID: 37853808 PMCID: PMC10661098 DOI: 10.1002/pro.4809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
β-Lactamases grant resistance to bacteria against β-lactam antibiotics. The active center of TEM-1 β-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 β-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 β-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 β-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 μM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.
Collapse
Affiliation(s)
- Zeyad H. Nafaee
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
- College of PharmacyUniversity of BabylonBabelIraq
| | - Viktória Egyed
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Attila Jancsó
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Annamária Tóth
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Adeleh Mokhles Gerami
- School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
| | - Thanh Thien Dang
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Juliana Heiniger‐Schell
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
| | - Éva Hunyadi‐Gulyás
- Laboratory of Proteomics Research, Biological Research CentreHungarian Research Network (HUN‐REN)SzegedHungary
| | - Gábor Peintler
- Department of Physical Chemistry and Material SciencesUniversity of SzegedSzegedHungary
| | - Béla Gyurcsik
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| |
Collapse
|
5
|
Burguera S, Sahu AK, Frontera A, Biswal HS, Bauza A. Spodium Bonds Involving Methylmercury and Ethylmercury in Proteins: Insights from X-ray Analysis and Computations. Inorg Chem 2023; 62:18524-18532. [PMID: 37902775 PMCID: PMC10647129 DOI: 10.1021/acs.inorgchem.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
In this study, the stability, directionality, and physical nature of Spodium bonds (SpBs, an attractive noncovalent force involving elements from group 12 and Lewis bases) between methylmercury (MeHg) and ethylmercury (EtHg) and amino acids (AAs) have been analyzed from both a structural (X-ray analysis) and theoretical (RI-MP2/def2-TZVP level of theory) point of view. More in detail, an inspection of the Protein Data Bank (PDB) reported evidence of noncovalent contacts between MeHg and EtHg molecules and electron-rich atoms (e.g., O atoms belonging to the protein backbone and S atoms from MET residues or the π-systems of aromatic AAs such as TYR or TRP). These results were rationalized through a computational study using MeHg coordinated to a thiolate group as a theoretical model and several neutral and charged electron-rich molecules (e.g., benzene, formamide, or chloride). The physical nature of the interaction was analyzed from electrostatics and orbital perspectives by performing molecular electrostatic potential (MEP) and natural bonding orbital (NBO) analyses. Lastly, the noncovalent interactions plot (NCIplot) technique was used to provide a qualitative view of the strength of the Hg SpBs and compare them to other ancillary interactions present in these systems as well as to shed light on the extension of the interaction in real space. We believe that the results derived from our study will be useful to those scientists devoted to protein engineering and bioinorganic chemistry as well as to expanding the current knowledge of SpBs among the chemical biology community.
Collapse
Affiliation(s)
- Sergi Burguera
- Department
of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Akshay Kumar Sahu
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training
School Complex, Homi Bhabha National Institute, Mumbai 400094, India
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Himansu S. Biswal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training
School Complex, Homi Bhabha National Institute, Mumbai 400094, India
| | - Antonio Bauza
- Department
of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| |
Collapse
|
6
|
Barakat AZ, Abdel-Aty AM, Ibrahim MK, Salah HA, Hegazy UM, Azouz RAM, Bassuiny RI, Shaapan RM, Mohamed SA. Purification and characterization of cysteine protease of Sarcocystis fusiformis from infected Egyptian water buffaloes. Sci Rep 2023; 13:16123. [PMID: 37752241 PMCID: PMC10522634 DOI: 10.1038/s41598-023-43147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Sarcocystis spp. infects water buffaloes (Bubalus bubalis) causing sarcocystosis. In the present study, Sarcocystis fusiformis was recognized in Egyptian water buffaloes based on histological observation and molecular analysis of internal transcribed spacer 1 (ITS1), 18S ribosomal RNA (18S rRNA) and cytochrome c oxidase subunit I (COX-1) gene fragments. Chemotherapy and vaccines against Sarcocystis spp. could potentially target proteases because they may play a crucial role in the infection. Cysteine proteases are multifunctional enzymes involved in vital metabolic processes. However, the involvement of proteases in S. fusiform infection has not yet been characterized. Here, the purification and study on some biochemical properties of protease isolated from cysts of S. fusiform were carried out. Protease with a molecular weight of 100 kDa was purified. LC-MS/MS analyzed the protein sequence of purified protease and the data suggested that the enzyme might be related to the cysteine protease. The purified protease exhibited maximum activity at pH 6 and a temperature of 50 °C. The Michaelis-Menten constant (Km), the maximum velocity (Vmax), and the turnover number (Kcat) were determined. The complete inhibition effect of cysteine inhibitors indicated that the purified enzyme is a cysteine protease. The results suggested that S. fusiform proteolytic enzyme may be necessary for parasite survival in water buffaloes by digesting host tissues. Therefore, cysteine protease could be a suitable target for vaccinations.
Collapse
Affiliation(s)
- Amal Z Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Marwa K Ibrahim
- Department of Microbial Biotechnology, National Research Centre, Dokki, Cairo, Egypt
| | - Hala A Salah
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Usama M Hegazy
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Rasha A M Azouz
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Raafat M Shaapan
- Zoonotic Disease Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
7
|
Rodríguez-Meza O, Palomino-Vizcaino G, Quintanar L, Costas M. Mercury ions impact the kinetic and thermal stabilities of human lens γ-crystallins via direct metal-protein interactions. J Inorg Biochem 2023; 242:112159. [PMID: 36827733 DOI: 10.1016/j.jinorgbio.2023.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Loss of metal homeostasis may be involved in several age-related diseases, such as cataracts. Cataracts are caused by the aggregation of lens proteins into light-scattering high molecular weight complexes that impair vision. Environmental exposure to heavy metals, such as mercury, is a risk factor for cataract development. Indeed, mercury ions induce the non-amyloid aggregation of human γC- and γS crystallins, while human γD-crystallin is not sensitive to this metal. Using Differential Scanning Calorimetry (DSC), we evaluate the impact of mercury ions on the kinetic stability of the three most abundant human γ-crystallins. The metal/crystallin interactions were characterized using Isothermal Titration Calorimetry (ITC). Human γD-crystallins exhibited kinetic stabilization due to the presence of mercury ions, despite its thermal stability being decreased. In contrast, human γC- and γS-crystallins are both, thermally and kinetically destabilized by this metal, consistent with their sensitivity to mercury-induced aggregation. The interaction of human γ-crystallins with mercury ions is highly exothermic and complex, since the protein interacts with the metal at more than three sites. The isolated domains of human γ-D and its variant with the H22Q mutation were also studied, revealing the importance of these regions in the mercury-induced stabilization by a direct metal-protein interaction.
Collapse
Affiliation(s)
- Oscar Rodríguez-Meza
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico
| | | | - Liliana Quintanar
- Departamento de Química, Centro de Investigación y Estudios Avanzados (Cinvestav), CdMx 07360, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico.
| |
Collapse
|
8
|
Li H, Li Y, Xu Y. Nitrogen-doped carbon dots from polystyrene for three analytes sensing and their logic recognition. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Łuczkowski M, Padjasek M, Ba Tran J, Hemmingsen L, Kerber O, Habjanič J, Freisinger E, Krężel A. An Extremely Stable Interprotein Tetrahedral Hg(Cys) 4 Core Forms in the Zinc Hook Domain of Rad50 Protein at Physiological pH. Chemistry 2022; 28:e202202738. [PMID: 36222310 PMCID: PMC9828754 DOI: 10.1002/chem.202202738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/09/2022]
Abstract
In nature, thiolate-based systems are the primary targets of divalent mercury (HgII ) toxicity. The formation of Hg(Cys)x cores in catalytic and structural protein centers mediates mercury's toxic effects and ultimately leads to cellular damage. Multiple studies have revealed distinct HgII -thiolate coordination preferences, among which linear HgII complexes are the most commonly observed in solution at physiological pH. Trigonal or tetrahedral geometries are formed at basic pH or in tight intraprotein Cys-rich metal sites. So far, no interprotein tetrahedral HgII complex formed at neutral pH has been reported. Rad50 protein is a part of the multiprotein MRN complex, a major player in DNA damage-repair processes. Its central region consists of a conserved CXXC motif that enables dimerization of two Rad50 molecules by coordinating ZnII . Dimerized motifs form a unique interprotein zinc hook domain (Hk) that is critical for the biological activity of the MRN. Using a series of length-differentiated peptide models of the Pyrococcus furiosus zinc hook domain, we investigated its interaction with HgII . Using UV-Vis, CD, PAC, and 199 Hg NMR spectroscopies as well as anisotropy decay, we discovered that all Rad50 fragments preferentially form homodimeric Hg(Hk)2 species with a distorted tetrahedral HgS4 coordination environment at physiological pH; this is the first example of an interprotein mercury site displaying tetrahedral geometry in solution. At higher HgII content, monomeric HgHk complexes with linear geometry are formed. The Hg(Cys)4 core of Rad50 is extremely stable and does not compete with cyanides, NAC, or DTT. Applying ITC, we found that the stability constant of the Rad50 Hg(Hk)2 complex is approximately three orders of magnitude higher than those of the strongest HgII complexes known to date.
Collapse
Affiliation(s)
- Marek Łuczkowski
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Michał Padjasek
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Józef Ba Tran
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100København ØDenmark
| | - Olga Kerber
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Jelena Habjanič
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZürichSwitzerland
| | - Eva Freisinger
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZürichSwitzerland
| | - Artur Krężel
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| |
Collapse
|
10
|
Hasan MS, Karmakar AK. Removal of car battery heavy metals from wastewater by activated carbons: a brief review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73675-73717. [PMID: 36085225 DOI: 10.1007/s11356-022-22715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Spent automobile batteries are one of the most significant secondary sources of harmful heavy metals for the environment. After being incorporated into the aquatic ecosystems, these metals disseminate to various plants, microorganisms, and the human body and cause multiple adverse effects. Activated carbons (ACs) have long been used as an effective adsorbent for different heavy metals in wastewater treatment processes. Although numerous research works have been published to date on this topic, they are scattered in the literature. In this review, we have assembled these works and provided an extensive overview of the application of ACs for treating spent car battery heavy metals (CBHMs) from aquatic systems. The preparation of ACs from different precursor materials, their application in the adsorption of CBHMs, the adsorption mechanism, kinetics, adsorption isotherms and various parameters that may affect the adsorption processes have been discussed in detail. A brief comparative analysis of the adsorption performances of ACs prepared from different precursor materials is also provided. Finally, recommendations for future research works are also offered.
Collapse
Affiliation(s)
- Md Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
11
|
Gupta S, Paul M, Sahu SK. Zymography assisted quick purification, characterization and inhibition analysis of K. pneumoniae alkaline phosphatase by mercury and thiohydroxyal compounds. Protein Expr Purif 2022; 201:106185. [PMID: 36195295 DOI: 10.1016/j.pep.2022.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/07/2022]
Abstract
In-gel hydrolysis of para-nitrophenyl phosphate (p-NPP) to yellow colored para-nitrophenol was used to locate precisely the K. pneumoniae alkaline phosphatase (Kp-ALKP) on 7% native PAGE. Subsequent removal of the yellow-stained band and electroelution yielded a 54 kDa, Kp-ALKP with Km, Vmax and kcat values of (0.7 ± 0.02) mM, (80 ± 4.5) μmol min-1 and (39.2 ± 2.2) × 104 s-1 respectively for p-NPP. Kp-ALKP was optimally active at 70 °C and pH 7.2 that was activated by Mg2+, Ca2+, Co2+ and inhibited by EDTA, PO4, Pb2+, Cu2+ and Hg2+. The enzyme was trypsin resistant and retained 75% activity in presence of 10 mM PO4 and 65% activity at 3 mM Hg2+ showing it's PO43- irrepressibility and Hg2+-tolerance. Molecular dynamics simulation revealed increased structural stability of Kp-ALKP at 70 °C that accounts for it's optimal temperature. Zymography revealed that both DTT and β-mercaptoethanol induced activity loss accompanied by mobility retardation of Kp-ALKP on 7% native PAGE. These results and in Silico analysis shows that both DTT and βME reduce the C308-C358 disulfide bond, leading to an open conformation of the enzyme. However, Hg2+ had negligible effect on the in-gel mobility of Kp-ALKP indicating it's plausible non-covalent interaction with surface-accessible amino-acids without significant conformational change. For the first time our study reveals the zymography as an easy, inexpensive and convenient tool for quick purification, characterization and conformational analysis of K. pneumoniae alkaline phosphatase.
Collapse
Affiliation(s)
- Sangam Gupta
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India.
| |
Collapse
|
12
|
Huang X, Li Y, Nie M, Yue M, Li Y, Lin Z, Pan H, Fang M, Wu T, Li S, Zhang J, Xia N, Zhao Q. Capsid destabilization and epitope alterations of human papillomavirus 18 in the presence of thimerosal. J Pharm Anal 2021; 11:617-627. [PMID: 34765275 PMCID: PMC8572666 DOI: 10.1016/j.jpha.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
Thimerosal has been widely used as a preservative in drug and vaccine products for decades. Due to the strong propensity to modify thiols in proteins, conformational changes could occur due to covalent bond formation between ethylmercury (a degradant of thimerosal) and thiols. Such a conformational change could lead to partial or even complete loss of desirable protein function. This study aims to investigate the effects of thimerosal on the capsid stability and antigenicity of recombinant human papillomavirus (HPV) 18 virus-like particles (VLPs). Dramatic destabilization of the recombinant viral capsid upon thimerosal treatment was observed. Such a negative effect on the thermal stability of VLPs preserved with thimerosal was shown to be dependent on the thimerosal concentration. Two highly neutralizing antibodies, 13H12 and 3C3, were found to be the most sensitive to thimerosal treatment. The kinetics of antigenicity loss, when monitored with 13H12 or 3C3 as probes, yielded two distinctly different sets of kinetic parameters, while the data from both monoclonal antibodies (mAbs) followed a biphasic exponential decay model. The potential effect of thimerosal on protein function, particularly for thiol-containing proteinaceous active components, needs to be comprehensively characterized during formulation development when a preservative is necessary. Altered antigenicity of thimerosal-treated HPV VLPs was observed with antibodies. Antigenicity reduction and capsid destabilization were concentration dependent. The kinetics of epitope-specific antigenicity loss were monitored in real time. The reduced antigenicity of adjuvant-adsorbed antigens was visualized.
Collapse
Affiliation(s)
- Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yike Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Meifeng Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mingxi Yue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Xiamen, Fujian, 361005, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Xiamen, Fujian, 361005, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Life Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Life Science, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.,School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
13
|
Elgamouz A, Shehadi I, Assal A, Bihi A, Kawde AN. Effect of AgNPs internal solution on the sensing of mercury(II) by an ion-selective electrode based on a thiol coordination from cysteine as ionophore. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Evaluating the activity and stability of sonochemically produced hemoglobin-copper hybrid nanoflowers against some metallic ions, organic solvents, and inhibitors. J Biosci Bioeng 2021; 132:327-336. [PMID: 34334311 DOI: 10.1016/j.jbiosc.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023]
Abstract
The disadvantage of the conventional protein-inorganic hybrid nanoflower production method is the long incubation period of the synthesis method. This period is not suitable for practical industrial use. Herein, protein-inorganic hybrid nanoflowers were synthesized using hemoglobin and copper ion by fast sonication method for 10 min. The synthesized nanoflowers were characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fouirer-transform infrared spectroscopy. The activity and stability of the nanoflowers in the presence of different metal ions, organic solvents, inhibitors, and storage conditions were also evaluated by comparing with free hemoglobin. According to obtained results, the optimum pH and temperatures of both hybrid nanoflower and free hemoglobin were pH 5 and 40 °C, respectively. At all pH levels, nanoflower was more stable than free protein and it was also more stable than the free hemoglobin at temperatures ranging between 50 °C and 80 °C. The free protein lost more than half of its activity in the presence of acetone, benzene, and N,N-dimethylformamide, while the hybrid nanoflower retained more than 70% of its activity for 2 h at 40 °C. The hybrid nanoflower activity was essentially increased in the presence of Ca2+, Zn2+, Fe2+, Cu2+ and Ni2+ (132%, 161%, 175%, 185% and 106%, respectively) at 5 mM concentration. The nanoflower retained more than 85% of its initial activity in the presence of all inhibitors. In addition, it retained all its activity for 3 days under different storage conditions, unlike free hemoglobin. The results demonstrated that new hybrid nanoflowers may be promising in different biotechnological applications such as catalytic biosensors and environmental or industrial catalytic processes.
Collapse
|
15
|
Karthikeyan OP, Smith TJ, Dandare SU, Parwin KS, Singh H, Loh HX, Cunningham MR, Williams PN, Nichol T, Subramanian A, Ramasamy K, Kumaresan D. Metal(loid) speciation and transformation by aerobic methanotrophs. MICROBIOME 2021; 9:156. [PMID: 34229757 PMCID: PMC8262016 DOI: 10.1186/s40168-021-01112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 05/06/2023]
Abstract
Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. Video Abstract.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX USA
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Shamsudeen Umar Dandare
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Kamaludeen Sara Parwin
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India
| | - Heetasmin Singh
- Department of Chemistry, University of Guyana, Georgetown, Guyana
| | - Hui Xin Loh
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Mark R Cunningham
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Paul Nicholas Williams
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | | - Deepak Kumaresan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| |
Collapse
|
16
|
Lettieri G, Notariale R, Carusone N, Giarra A, Trifuoggi M, Manna C, Piscopo M. New Insights into Alterations in PL Proteins Affecting Their Binding to DNA after Exposure of Mytilus galloprovincialis to Mercury-A Possible Risk to Sperm Chromatin Structure? Int J Mol Sci 2021; 22:5893. [PMID: 34072703 PMCID: PMC8198333 DOI: 10.3390/ijms22115893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Mercury (Hg) is a highly toxic and widespread pollutant. We previously reported that the exposure of Mytilus galloprovincialis for 24 h to doses of HgCl2 similar to those found in seawater (range 1-100 pM) produced alterations in the properties of protamine-like (PL) proteins that rendered them unable to bind and protect DNA from oxidative damage. In the present work, to deepen our studies, we analyzed PL proteins by turbidimetry and fluorescence spectroscopy and performed salt-induced release analyses of these proteins from sperm nuclei after the exposure of mussels to HgCl2 at the same doses. Turbidity assays indicated that mercury, at these doses, induced PL protein aggregates, whereas fluorescence spectroscopy measurements showed mercury-induced conformational changes. Indeed, the mobility of the PLII band changed in sodium dodecyl sulphate-polyacrylamide gel electrophoresis, particularly after exposure to 10-pM HgCl2, confirming the mercury-induced structural rearrangement. Finally, exposure to HgCl2 at all doses produced alterations in PL-DNA binding, detectable by DNA absorption spectra after the PL protein addition and by a decreased release of PLII and PLIII from the sperm nuclei. In conclusion, in this paper, we reported Hg-induced PL protein alterations that could adversely affect mussel reproductive activity, providing an insight into the molecular mechanism of Hg-related infertility.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.)
| | - Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Nadia Carusone
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.)
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (A.G.); (M.T.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (A.G.); (M.T.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.)
| |
Collapse
|
17
|
Gochfeld M, Burger J. Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18407-18420. [PMID: 33507504 PMCID: PMC8026698 DOI: 10.1007/s11356-021-12361-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/02/2021] [Indexed: 05/20/2023]
Abstract
Eating fish is often recommended as part of a healthful diet. However, fish, particularly large predatory fish, can contain significant levels of the highly toxic methylmercury (MeHg). Ocean fish in general also contain high levels of selenium (Se), which is reported to confer protection against toxicity of various metals including mercury (Hg). Se and Hg have a high mutual binding affinity, and each can reduce the toxicity of the other. This is an evolving area of extensive research and controversy with variable results in the animal and epidemiologic literature. MeHg is toxic to many organ systems through high affinity for -SH (thiol) ligands on enzymes and microtubules. Hg toxicity also causes oxidative damage particularly to neurons in the brain. Hg is a potent and apparently irreversible inhibitor of the selenoenzymes, glutathione peroxidases (GPX), and thioredoxin reductases (TXNRD) that are important antioxidants, each with a selenocysteine (SeCys) at the active site. Hg binding to the SeCys inhibits these enzymes, accounting in part for the oxidative damage that is an important manifestation of Hg toxicity, particularly if there is not a pool of excess Se to synthesize new enzymes. A molar excess of Se reflected in an Se:Hg molar ratio > 1 is often invoked as evidence that the Hg content can be discounted. Some recent papers now suggest that if the Se:Hg molar ratio exceeds 1:1, the fish is safe and the mercury concentration can be ignored. Such papers suggested that the molar ratio rather than the Hg concentration should be emphasized in fish advisories. This paper examines some of the limitations of current understanding of the Se:Hg molar ratio in guiding fish consumption advice; Se is certainly an important part of the Hg toxicity story, but it is not the whole story. We examine how Hg toxicity relates also to thiol binding. We suggest that a 1:1 molar ratio cannot be relied on because not all of the Se in fish or in the fish eater is available to interact with Hg. Moreover, in some fish, Se levels are sufficiently high to warrant concern about Se toxicity.
Collapse
Affiliation(s)
- Michael Gochfeld
- Rutgers Biomedical and Health Sciences, School of Public Health, Piscataway, NJ, USA.
- Environmental and Occupational Health Sciences Institutes, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Joanna Burger
- Environmental and Occupational Health Sciences Institutes, Rutgers University, Piscataway, NJ, 08854, USA
- Division of Life Science, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
18
|
Piscopo M, Notariale R, Tortora F, Lettieri G, Palumbo G, Manna C. Novel Insights into Mercury Effects on Hemoglobin and Membrane Proteins in Human Erythrocytes. Molecules 2020; 25:molecules25143278. [PMID: 32707650 PMCID: PMC7397049 DOI: 10.3390/molecules25143278] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Mercury (Hg) is a global environmental pollutant that affects human and ecosystem health. With the aim of exploring the Hg-induced protein modifications, intact human erythrocytes were exposed to HgCl2 (1-60 µM) and cytosolic and membrane proteins were analyzed by SDS-PAGE and AU-PAGE. A spectrofluorimetric assay for quantification of Reactive Oxygen Species (ROS) generation was also performed. Hg2+ exposure induces alterations in the electrophoretic profile of cytosolic proteins with a significant decrease in the intensity of the hemoglobin monomer, associated with the appearance of a 64 kDa band, identified as a mercurized tetrameric form. This protein decreases with increasing HgCl2 concentrations and Hg-induced ROS formation. Moreover, it appears resistant to urea denaturation and it is only partially dissociated by exposure to dithiothreitol, likely due to additional protein-Hg interactions involved in aggregate formation. In addition, specific membrane proteins, including band 3 and cytoskeletal proteins 4.1 and 4.2, are affected by Hg2+-treatment. The findings reported provide new insights into the Hg-induced possible detrimental effects on erythrocyte physiology, mainly related to alterations in the oxygen binding capacity of hemoglobin as well as decreases in band 3-mediated anion exchange. Finally, modifications of cytoskeletal proteins 4.1 and 4.2 could contribute to the previously reported alteration in cell morphology.
Collapse
Affiliation(s)
- Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Correspondence: (M.P.); (C.M.)
| | - Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (F.T.)
| | - Fabiana Tortora
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (F.T.)
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Giancarlo Palumbo
- Department of Economics, Management, Institutions, University of Naples Federico II, via Cupa Nuova Cinthia, 80126 Naples, Italy;
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (F.T.)
- Correspondence: (M.P.); (C.M.)
| |
Collapse
|
19
|
Maniero MÁ, Wuilloud RG, Callegari EA, Smichowski PN, Fanelli MA. Metalloproteomics analysis in human mammary cell lines treated with inorganic mercury. J Trace Elem Med Biol 2020; 58:126441. [PMID: 31812871 PMCID: PMC8061084 DOI: 10.1016/j.jtemb.2019.126441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022]
Abstract
The interest in inorganic Hg toxicity and carcinogenicity has been pointed to target organs such as kidney, brain or placenta, but only a few studies have focused on the mammary gland. In this work, analytical combination techniques (SDS-PAGE followed by CV-AFS, and nanoUPLC-ESI-MS/MS) were used to determine proteins that could bind Hg in three human mammary cell lines. Two of them were tumorigenic (MCF-7 and MDA-MB-231) and the other one was the non-tumorigenic cell line (MCF-10A). There are no studies that provide this kind of information in breast cell lines with IHg treatment. Previously, we described the viability, uptake and the subcellular distribution of Hg in human breast cells and analysis of RNA-seq about the genes that encode proteins which are related to cytotoxicity of Hg. This work provides important protein candidates for further studies of Hg toxicity in the mammary gland, thus expanding our understanding of how environmental contaminants might affect tumor progression and contribute with future therapeutic methods.
Collapse
Affiliation(s)
- Mariángeles Ávila Maniero
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Padre J. Contreras 1300, 5500, Mendoza, Argentina; Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Lateral Sur del Acceso Este 2245, M5519, Guaymallén, Mendoza, Argentina
| | - Rodolfo G Wuilloud
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Padre J. Contreras 1300, 5500, Mendoza, Argentina.
| | - Eduardo A Callegari
- BRIN-USDS SOM Proteomics Facility, University of South Dakota, 414 E Clark St, Vermillion, SD, 57069, USA
| | - Patricia N Smichowski
- Comisión Nacional de Energía Atómica, Gerencia Química, CONICET, Av. Gral. Paz 1499, B1650 Villa Maipú, Buenos Aires, Argentina
| | - Mariel A Fanelli
- Laboratorio de Oncología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-CONICET), Av. Dr. Adrian Ruiz Leal, Mendoza, Argentina
| |
Collapse
|
20
|
Nogara PA, Oliveira CS, Schmitz GL, Piquini PC, Farina M, Aschner M, Rocha JBT. Methylmercury's chemistry: From the environment to the mammalian brain. Biochim Biophys Acta Gen Subj 2019; 1863:129284. [PMID: 30659885 DOI: 10.1016/j.bbagen.2019.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Methylmercury is a neurotoxicant that is found in fish and rice. MeHg's toxicity is mediated by blockage of -SH and -SeH groups of proteins. However, the identification of MeHg's targets is elusive. Here we focus on the chemistry of MeHg in the abiotic and biotic environment. The toxicological chemistry of MeHg is complex in metazoans, but at the atomic level it can be explained by exchange reactions of MeHg bound to -S(e)H with another free -S(e)H group (R1S(e)-HgMe + R2-S(e)H ↔ R1S(e)H + R2-S(e)-HgMe). This reaction was first studied by professor Rabenstein and here it is referred as the "Rabenstein's Reaction". The absorption, distribution, and excretion of MeHg in the environment and in the body of animals will be dictated by Rabenstein's reactions. The affinity of MeHg by thiol and selenol groups and the exchange of MeHg by Rabenstein's Reaction (which is a diffusion controlled reaction) dictates MeHg's neurotoxicity. However, it is important to emphasize that the MeHg exchange reaction velocity with different types of thiol- and selenol-containing proteins will also depend on protein-specific structural and thermodynamical factors. New experimental approaches and detailed studies about the Rabenstein's reaction between MeHg with low molecular mass thiol (LMM-SH) molecules (cysteine, GSH, acetyl-CoA, lipoate, homocysteine) with abundant high molecular mass thiol (HMM-SH) molecules (albumin, hemoglobin) and HMM-SeH (GPxs, Selenoprotein P, TrxR1-3) are needed. The study of MeHg migration from -S(e)-Hg- bonds to free -S(e)H groups (Rabenstein's Reaction) in pure chemical systems and neural cells (with special emphasis to the LMM-SH and HMM-S(e)H molecules cited above) will be critical to developing realistic constants to be used in silico models that will predict the distribution of MeHg in humans.
Collapse
Affiliation(s)
- Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cláudia S Oliveira
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela L Schmitz
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Paulo C Piquini
- Departamento de Física, CCNE, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
21
|
Panwar D, Kaira GS, Kapoor M. Cross-linked enzyme aggregates (CLEAs) and magnetic nanocomposite grafted CLEAs of GH26 endo-β-1,4-mannanase: Improved activity, stability and reusability. Int J Biol Macromol 2017; 105:1289-1299. [PMID: 28768184 DOI: 10.1016/j.ijbiomac.2017.07.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023]
Abstract
A comparative study on immobilization of recombinant endo-β-1,4-mannanase (ManB-1601), using cross-linked aggregated form (MB-C) and novel chitosan magnetic nanocomposites of MB-C (MB-Mag-C) was carried out. FT-IR and Raman spectroscopy were used to confirm the surface modifications while, scanning electron and atomic force microscopy were performed to demonstrate the surface topology and magnetic nature of MB-C and MB-Mag-C. Among MB-C and MB-Mag-C, the former showed better activity and stability in broad range of pH, thermo-stability and kinetic parameters while, the latter showed higher temperature optima and solvent stability. MB-C and MB-Mag-C when compared with free enzyme showed up to 73.2% higher activity (pH 4-9), up to 95.6% higher stability (pH 3-10, 9h incubation at room temperature), up to 15°C higher optimal temperature, higher stability (up to 83%) in the presence of solvents and up to 1.62-fold higher deactivation energy (Ed). Immobilized enzymes were able to repeatedly hydrolyze locust bean gum till 12 cycles and generated predominantly di-, tri- and tetra- species of β-manno-oligosaccharides.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru 570 020, India
| | - Gaurav Singh Kaira
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru 570 020, India.
| |
Collapse
|
22
|
Li R, Wu H, Ding J, Fu W, Gan L, Li Y. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci Rep 2017; 7:46545. [PMID: 28484233 PMCID: PMC5422849 DOI: 10.1038/srep46545] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/22/2017] [Indexed: 11/24/2022] Open
Abstract
Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI's food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks.
Collapse
Affiliation(s)
- Rui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Han Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Weimin Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yi Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|