1
|
Hofmeister DL, Seltzner CA, Bockhaus NJ, Thoden JB, Holden HM. Investigation of the enzymes required for the biosynthesis of 2,3-diacetamido-2,3-dideoxy-d-glucuronic acid in Psychrobacter cryohalolentis K5 T. Protein Sci 2023; 32:e4502. [PMID: 36346293 PMCID: PMC9794024 DOI: 10.1002/pro.4502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Psychrobacter cryohalolentis K5T is a Gram-negative bacterium first isolated from Siberian permafrost in 2006. It has a complex O-antigen containing l-rhamnose, d-galactose, two diacetamido-sugars, and one triacetamido-sugar. The biosynthetic pathway for one of the diacetamido-sugars, namely 2,3-diacetamido-2,3-dideoxy-d-glucuronic acid, is presently unknown. Utilizing the published genome sequence of P. cryohalolentis K5T , we hypothesized that the genes designated Pcryo_0613, Pcryo_0614, Pcryo_0616, and Pcryo_0615 encode for a uridine dinucleotide (UDP)-N-acetyl-d-glucosamine 6-dehydrogenase, an nicotinamide adenine dinucleotide (oxidized) (NAD+ )-dependent dehydrogenase, a pyridoxal 5'-phosphate (PLP)-dependent aminotransferase, and an N-acetyltransferase, respectively, activities of which would be required for the biosynthesis of this unusual carbohydrate. Here we present the cloning, overexpression, and purification of these hypothetical proteins. Kinetic data on the enzymes encoded by Pcryo_0613, Pcryo_0614, and Pcryo_0615 confirmed their postulated biochemical activities. In addition, the high-resolution X-ray structures of both the internal and external aldimine forms of the aminotransferase were determined to 1.25 and 1.0 Å, respectively. Finally, the three-dimensional architecture of the N-acetyltransferase in complex with its substrate and coenzyme A was solved to 1.8 Å resolution. Strikingly, the N-acetyltransferase was shown to adopt a new motif for UDP-sugar binding. The data presented herein provide additional insight into sugar biosynthesis in Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Chase A. Seltzner
- Department of BiochemistryUniversity of WisconsinMadisonWisconsinUSA
| | | | - James B. Thoden
- Department of BiochemistryUniversity of WisconsinMadisonWisconsinUSA
| | - Hazel M. Holden
- Department of BiochemistryUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
2
|
Srivastava J, Balaji PV. Clues to reaction specificity in
PLP
‐dependent fold type I aminotransferases of monosaccharide biosynthesis. Proteins 2022; 90:1247-1258. [DOI: 10.1002/prot.26305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jaya Srivastava
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Mumbai India
| | - Petety V. Balaji
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Mumbai India
| |
Collapse
|
3
|
Heisdorf CJ, Griffiths WA, Thoden JB, Holden HM. Investigation of the enzymes required for the biosynthesis of an unusual formylated sugar in the emerging human pathogen Helicobacter canadensis. Protein Sci 2021; 30:2144-2160. [PMID: 34379357 DOI: 10.1002/pro.4169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023]
Abstract
It is now well established that the Gram-negative bacterium, Helicobacter pylori, causes gastritis in humans. In recent years, it has become apparent that the so-called non-pylori Helicobacters, normally infecting pigs, cats, and dogs, may also be involved in human pathology via zoonotic transmission. Indeed, more than 30 species of non-pylori Helicobacters have been identified thus far. One such organism is Helicobacter canadensis, an emerging pathogen whose genome sequence was published in 2009. Given our long-standing interest in the biosynthesis of N-formylated sugars found in the O-antigens of some Gram-negative bacteria, we were curious as to whether H. canadensis produces such unusual carbohydrates. Here, we demonstrate using both biochemical and structural techniques that the proteins encoded by the HCAN_0198, HCAN_0204, and HCAN_0200 genes in H. canadensis, correspond to a 3,4-ketoisomerase, a pyridoxal 5'-phosphate aminotransferase, and an N-formyltransferase, respectively. For this investigation, five high-resolution X-ray structures were determined and the kinetic parameters for the isomerase and the N-formyltransferase were measured. Based on these data, we suggest that the unusual sugar, 3-formamido-3,6-dideoxy-d-glucose, will most likely be found in the O-antigen of H. canadensis. Whether N-formylated sugars found in the O-antigen contribute to virulence is presently unclear, but it is intriguing that they have been observed in such pathogens as Francisella tularensis, Mycobacterium tuberculosis, and Brucella melitensis.
Collapse
Affiliation(s)
- Colton J Heisdorf
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - William A Griffiths
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Seltzner CA, Ferek JD, Thoden JB, Holden HM. Characterization of an aminotransferase from Acanthamoeba polyphaga Mimivirus. Protein Sci 2021; 30:1882-1894. [PMID: 34076307 DOI: 10.1002/pro.4139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4-amino-4,6-dideoxy-d-glucose, also known as d-viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide-linked sugar, which in the Mimivirus is thought to be UDP-d-glucose. The enzyme required for the installment of the amino group at the C-4' position of the pyranosyl moiety is encoded in the Mimivirus by the L136 gene. Here, we describe a structural and functional analysis of this pyridoxal 5'-phosphate-dependent enzyme, referred to as L136. For this analysis, three high-resolution X-ray structures were determined: the wildtype enzyme/pyridoxamine 5'-phosphate/dTDP complex and the site-directed mutant variant K185A in the presence of either UDP-4-amino-4,6-dideoxy-d-glucose or dTDP-4-amino-4,6-dideoxy-d-glucose. Additionally, the kinetic parameters of the enzyme utilizing either UDP-d-glucose or dTDP-d-glucose were measured and demonstrated that L136 is efficient with both substrates. This is in sharp contrast to the structurally related DesI from Streptomyces venezuelae, whose three-dimensional architecture was previously reported by this laboratory. As determined in this investigation, DesI shows a profound preference in its catalytic efficiency for the dTDP-linked sugar substrate. This difference can be explained in part by a hydrophobic patch in DesI that is missing in L136. Notably, the structure of L136 reported here represents the first three-dimensional model for a virally encoded PLP-dependent enzyme and thus provides new information on sugar aminotransferases in general.
Collapse
Affiliation(s)
- Chase A Seltzner
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Justin D Ferek
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Prasertanan T, Palmer DRJ, Sanders DAR. Snapshots along the catalytic path of KabA, a PLP-dependent aminotransferase required for kanosamine biosynthesis in Bacillus cereus UW85. J Struct Biol 2021; 213:107744. [PMID: 33984505 DOI: 10.1016/j.jsb.2021.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Kanosamine is an antibiotic and antifungal monosaccharide. The kanosamine biosynthetic pathway from glucose 6-phosphate in Bacillus cereus UW85 was recently reported, and the functions of each of the three enzymes in the pathway, KabA, KabB and KabC, were demonstrated. KabA, a member of a subclass of the VIβ family of PLP-dependent aminotransferases, catalyzes the second step in the pathway, generating kanosamine 6-phosphate (K6P) using l-glutamate as the amino-donor. KabA catalysis was shown to be extremely efficient, with a second-order rate constant with respect to K6P transamination of over 107 M-1s-1. Here we report the high-resolution structure of KabA in both the PLP- and PMP-bound forms. In addition, co-crystallization with K6P allowed the structure of KabA in complex with the covalent PLP-K6P adduct to be solved. Co-crystallization or soaking with glutamate or 2-oxoglutarate did not result in crystals with either substrate/product. Reduction of the PLP-KabA complex with sodium cyanoborohydride gave an inactivated enzyme, and crystals of the reduced KabA were soaked with the l-glutamate analog glutarate to mimic the KabA-PLP-l-glutamate complex. Together these four structures give a complete picture of how the active site of KabA recognizes substrates for each half-reaction. The KabA structure is discussed in the context of homologous aminotransferases.
Collapse
Affiliation(s)
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
6
|
Manissorn J, Sitthiyotha T, Montalban JRE, Chunsrivirot S, Thongnuek P, Wangkanont K. Biochemical and Structural Investigation of GnnA in the Lipopolysaccharide Biosynthesis Pathway of Acidithiobacillus ferrooxidans. ACS Chem Biol 2020; 15:3235-3243. [PMID: 33200610 DOI: 10.1021/acschembio.0c00791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial component in the outer membrane of Gram-negative bacteria that contributes to both pathogenicity as well as immunity against pathogenic bacteria. Typical LPS contains GlcN disaccharide as the core of lipid A. However, some bacteria such as Acidithiobacillus ferrooxidans and Leptospira interrogans contain GlcN3N in lipid A instead. This modification has been shown to dampen the host immune response and increase resistance to antimicrobial peptides. Therefore, investigation of the enzymes responsible for the biosynthesis of GlcN3N has promising applications in the development of vaccines, antibiotics, or usage of the enzymes in chemoenzymatic synthesis of modified LPS. Here, we describe biochemical and structural investigation of GnnA from A. ferrooxidans (AfGnnA) that is responsible for oxidation of UDP-GlcNAc, which subsequently undergoes transamination to produce UDP-GlcNAc3N as a precursor for LPS biosynthesis. AfGnnA is specific for NAD+ and UDP-GlcNAc. The crystal structures of AfGnnA in combination with molecular dynamics simulation and mutational analysis suggest the substrate recognition mode and the catalytic mechanism. K91 or H164 is a potential catalytic base in the oxidation reaction. The results will not only provide insights into the biosynthesis of unusual LPS but will also lay the foundation for development of more immunogenic vaccines, novel antibiotics, or utilization of GnnA in the synthesis of UDP-sugars or modified LPS.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Biomedical Engineering Research Center (BMERC) and Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thassanai Sitthiyotha
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jenny Rose E. Montalban
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
| | - Surasak Chunsrivirot
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Thongnuek
- Biomedical Engineering Research Center (BMERC) and Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, and Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Gayathri SC, Manoj N. Crystallographic Snapshots of the Dunathan and Quinonoid Intermediates provide Insights into the Reaction Mechanism of Group II Decarboxylases. J Mol Biol 2020; 432:166692. [PMID: 33122004 DOI: 10.1016/j.jmb.2020.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023]
Abstract
PLP-dependent enzymes catalyze a plethora of chemical reactions affecting diverse physiological functions. Here we report the structural determinants of the reaction mechanism in a Group II PLP-dependent decarboxylase by assigning two early intermediates. The in-crystallo complexes of the PLP bound form, and the Dunathan and quinonoid intermediates, allowed direct observation of the active site interactions. The structures reveal that a subtle rearrangement of a conserved Arg residue in concert with a water-mediated interaction with the carboxylate of the Dunathan intermediate, appears to directly stabilize the alignment and facilitate the release of CO2 to yield the quinonoid. Modeling indicates that the conformational change of a dynamic catalytic loop to a closed form controls a conserved network of hydrogen bond interactions between catalytic residues to protonate the quinonoid. Our results provide a structural framework to elucidate mechanistic roles of residues that govern reaction specificity and catalysis in PLP-dependent decarboxylation.
Collapse
Affiliation(s)
- Subash Chellam Gayathri
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
8
|
Hofmeister DL, Thoden JB, Holden HM. Investigation of a sugar N-formyltransferase from the plant pathogen Pantoea ananatis. Protein Sci 2019; 28:707-716. [PMID: 30666752 PMCID: PMC6423709 DOI: 10.1002/pro.3577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/05/2023]
Abstract
Pantoea ananatis is a Gram-negative bacterium first recognized in 1928 as the causative agent of pineapple rot in the Philippines. Since then various strains of the organism have been implicated in the devastation of agriculturally important crops. Some strains, however, have been shown to function as non-pathogenic plant growth promoting organisms. To date, the factors that determine pathogenicity or lack thereof between the various strains are not well understood. All P. ananatis strains contain lipopolysaccharides, which differ with respect to the identities of their associated sugars. Given our research interest on the presence of the unusual sugar, 4-formamido-4,6-dideoxy-d-glucose, found on the lipopolysaccharides of Campylobacter jejuni and Francisella tularensis, we were curious as to whether other bacteria have the appropriate biosynthetic machinery to produce these unique carbohydrates. Four enzymes are typically required for their biosynthesis: a thymidylyltransferase, a 4,6-dehydratase, an aminotransferase, and an N-formyltransferase. Here, we report that the gene SAMN03097714_1080 from the P. ananatis strain NFR11 does, indeed, encode for an N-formyltransferase, hereafter referred to as PA1080c. Our kinetic analysis demonstrates that PA1080c displays classical Michaelis-Menten kinetics with dTDP-4-amino-4,6-dideoxy-d-glucose as the substrate and N10 -formyltetrahydrofolate as the carbon source. In addition, the X-ray structure of PA1080c, determined to 1.7 Å resolution, shows that the enzyme adopts the molecular architecture observed for other sugar N-formyltransferases. Analysis of the P. ananatis NFR11 genome suggests that the three other enzymes necessary for N-formylated sugar biosynthesis are also present. Intriguingly, those strains of P. ananatis that are non-pathogenic apparently do not contain these genes.
Collapse
Affiliation(s)
| | - James B. Thoden
- Department of BiochemistryUniversity of WisconsinMadisonWisconsin, 53706
| | - Hazel M. Holden
- Department of BiochemistryUniversity of WisconsinMadisonWisconsin, 53706
| |
Collapse
|
9
|
Kaundinya CR, Savithri HS, Rao KK, Balaji PV. EpsN from Bacillus subtilis 168 has UDP-2,6-dideoxy 2-acetamido 4-keto glucose aminotransferase activity in vitro. Glycobiology 2019; 28:802-812. [PMID: 29982582 DOI: 10.1093/glycob/cwy063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/04/2018] [Indexed: 01/08/2023] Open
Abstract
The gene epsN of Bacillus subtilis 168 was cloned and overexpressed in Escherichia coli. Purified recombinant EpsN is shown to be a pyridoxal 5'-phosphate (PLP)-dependent aminotransferase by absorption spectroscopy, l-cycloserine inhibition and reverse phase HPLC studies. EpsN catalyzes the conversion of UDP-2,6-dideoxy 2-acetamido 4-keto glucose to UDP-2,6-dideoxy 2-acetamido 4-amino glucose. Lys190 was found by sequence comparison and site-directed mutagenesis to form Schiff base with PLP. Mutagenesis studies showed that, in addition to Lys190, Ser185, Glu164, Gly58 and Thr59 are essential for aminotransferase activity.
Collapse
Affiliation(s)
- Chinmayi R Kaundinya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Handanahal S Savithri
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru, India
| | - K Krishnamurthy Rao
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Petety V Balaji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
10
|
Dow GT, Thoden JB, Holden HM. The three-dimensional structure of NeoB: An aminotransferase involved in the biosynthesis of neomycin. Protein Sci 2018. [PMID: 29516565 DOI: 10.1002/pro.3400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aminoglycoside antibiotics, discovered as natural products in the 1940s, demonstrate a broad antimicrobial spectrum. Due to their nephrotoxic and ototoxic side effects, however, their widespread clinical usage has typically been limited to the treatment of serious infections. Neomycin B, first isolated from strains of Streptomyces in 1948, is one such drug that was approved for human use by the U.S. Food and Drug Administration in 1964. Only within the last 11 years has the biochemical pathway for its production been elaborated, however. Here we present the three-dimensional architecture of NeoB from Streptomyces fradiae, which is a pyridoxal 5'-phosphate or PLP-dependent aminotransferase that functions on two different substrates in neomycin B biosynthesis. For this investigation, four high resolution X-ray structures of NeoB were determined in various complexed states. The overall fold of NeoB is that typically observed for members of the "aspartate aminotransferase" family with the exception of an additional three-stranded antiparallel β-sheet that forms part of the subunit-subunit interface of the dimer. The manner in which the active site of NeoB accommodates quite different substrates has been defined by this investigation. In addition, during the course of this study, we also determined the structure of the aminotransferase GenB1 to high resolution. GenB1 functions as an aminotransferase in gentamicin biosynthesis. Taken together, the structures of NeoB and GenB1, presented here, provide the first detailed descriptions of aminotransferases that specifically function on aldehyde moieties in aminoglycoside biosynthesis.
Collapse
Affiliation(s)
- Garrett T Dow
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706
| |
Collapse
|
11
|
Woodford CR, Thoden JB, Holden HM. Molecular architecture of an N-formyltransferase from Salmonella enterica O60. J Struct Biol 2017; 200:267-278. [PMID: 28263875 DOI: 10.1016/j.jsb.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/28/2023]
Abstract
N-formylated sugars are found on the lipopolysaccharides of various pathogenic Gram negative bacteria including Campylobacter jejuni 81116, Francisella tularensis, Providencia alcalifaciens O30, and Providencia alcalifaciens O40. The last step in the biosynthetic pathways for these unusual sugars is catalyzed by N-formyltransferases that utilize N10-formyltetrahydrofolate as the carbon source. The substrates are dTDP-linked amino sugars with the functional groups installed at either the C-3' or C-4' positions of the pyranosyl rings. Here we describe a structural and enzymological investigation of the putative N-formyltransferase, FdtF, from Salmonella enterica O60. In keeping with its proposed role in the organism, the kinetic data reveal that the enzyme is more active with dTDP-3-amino-3,6-dideoxy-d-galactose than with dTDP-3-amino-3,6-dideoxy-d-glucose. The structural data demonstrate that the enzyme contains, in addition to the canonical N-formyltransferase fold, an ankyrin repeat moiety that houses a second dTDP-sugar binding pocket. This is only the second time an ankyrin repeat has been shown to be involved in small molecule binding. The research described herein represents the first structural analysis of a sugar N-formyltransferase that specifically functions on dTDP-3-amino-3,6-dideoxy-d-galactose in vivo and thus adds to our understanding of these intriguing enzymes.
Collapse
Affiliation(s)
- Colin R Woodford
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|