1
|
Unksov IN, Anttu N, Verardo D, Höök F, Prinz CN, Linke H. Fluorescence excitation enhancement by waveguiding nanowires. NANOSCALE ADVANCES 2023; 5:1760-1766. [PMID: 36926575 PMCID: PMC10012842 DOI: 10.1039/d2na00749e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The optical properties of vertical semiconductor nanowires can allow an enhancement of fluorescence from surface-bound fluorophores, a feature proven useful in biosensing. One of the contributing factors to the fluorescence enhancement is thought to be the local increase of the incident excitation light intensity in the vicinity of the nanowire surface, where fluorophores are located. However, this effect has not been experimentally studied in detail to date. Here, we quantify the excitation enhancement of fluorophores bound to a semiconductor nanowire surface by combining modelling with measurements of fluorescence photobleaching rate, indicative of the excitation light intensity, using epitaxially grown GaP nanowires. We study the excitation enhancement for nanowires with a diameter of 50-250 nm and show that excitation enhancement reaches a maximum for certain diameters, depending on the excitation wavelength. Furthermore, we find that the excitation enhancement decreases rapidly within tens of nanometers from the nanowire sidewall. The results can be used to design nanowire-based optical systems with exceptional sensitivities for bioanalytical applications.
Collapse
Affiliation(s)
- Ivan N Unksov
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| | - Nicklas Anttu
- Physics, Faculty of Science and Engineering, Åbo Akademi University FI-20500 Turku Finland
| | - Damiano Verardo
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
- AlignedBio AB, Medicon Village Scheeletorget 1 223 63 Lund Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Christelle N Prinz
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| |
Collapse
|
2
|
Gueta O, Sheinenzon O, Azulay R, Shalit H, Strugach DS, Hadar D, Gelkop S, Milo A, Amiram M. Tuning the Properties of Protein-Based Polymers Using High-Performance Orthogonal Translation Systems for the Incorporation of Aromatic Non-Canonical Amino Acids. Front Bioeng Biotechnol 2022; 10:913057. [PMID: 35711629 PMCID: PMC9195583 DOI: 10.3389/fbioe.2022.913057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
The incorporation of non-canonical amino acids (ncAAs) using engineered aminoacyl-tRNA synthetases (aaRSs) has emerged as a powerful methodology to expand the chemical repertoire of proteins. However, the low efficiencies of typical aaRS variants limit the incorporation of ncAAs to only one or a few sites within a protein chain, hindering the design of protein-based polymers (PBPs) in which multi-site ncAA incorporation can be used to impart new properties and functions. Here, we determined the substrate specificities of 11 recently developed high-performance aaRS variants and identified those that enable an efficient multi-site incorporation of 15 different aromatic ncAAs. We used these aaRS variants to produce libraries of two temperature-responsive PBPs-elastin- and resilin-like polypeptides (ELPs and RLPs, respectively)-that bear multiple instances of each ncAA. We show that incorporating such aromatic ncAAs into the protein structure of ELPs and RLPs can affect their temperature responsiveness, secondary structure, and self-assembly propensity, yielding new and diverse families of ELPs and RLPs, each from a single DNA template. Finally, using a molecular model, we demonstrate that the temperature-responsive behavior of RLPs is strongly affected by both the hydrophobicity and the size of the unnatural aromatic side-chain. The ability to efficiently incorporate multiple instances of diverse ncAAs alongside the 20 natural amino acids can help to elucidate the effect of ncAA incorporation on these and many other PBPs, with the aim of designing additional precise and chemically diverse polymers with new or improved properties.
Collapse
Affiliation(s)
- Osher Gueta
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ortal Sheinenzon
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rotem Azulay
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hadas Shalit
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sigal Gelkop
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
3
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
4
|
Gonzalez-Obeso C, Rodriguez-Cabello JC, Kaplan DL. Fast and reversible crosslinking of a silk elastin-like polymer. Acta Biomater 2022; 141:14-23. [PMID: 34971785 PMCID: PMC8898266 DOI: 10.1016/j.actbio.2021.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Elastin-like polymers (ELPs) and their chimeric subfamily the silk elastin-like polymers (SELPs) exhibit a lower critical solvation temperature (LCST) behavior in water which has been extensively studied from theoretical, computational and experimental perspectives. The inclusion of silk domains in the backbone of the ELPs effects the molecular dynamics of the elastin-like domains in response to increased temperature above its transition temperature and confers gelation ability. This response has been studied in terms of initial and long-term changes in structures, however, intermediate transition states have been less investigated. Moreover, little is known about the effects of reversible hydration on the elastin versus silk domains in the physical crosslinks. We used spectroscopic techniques to analyze initial, intermediate and long-term states of the crosslinks in SELPs. A combination of thermoanalytical and rheological measurements demonstrated that the fast reversible rehydration of the elastin motifs adjacent to the relatively small silk domains was capable of breaking the silk physical crosslinks. This feature can be exploited to tailor the dynamics of these types of crosslinks in SELPs. STATEMENT OF SIGNIFICANCE: The combination of silk and elastin in a single molecule results in synergy via their interactions to impact the protein polymer properties. The ability of the silk domains to crosslink affects the thermoresponsive properties of the elastin domains. These interactions have been studied at early and late states of the physical crosslinking, while the intermediate states were the focus of the present study to understand the reversible phase-transitions of the elastin domains over the silk physical crosslinking. The thermoresponsive properties of the elastin domains at the initial, intermediate and late states of silk crosslinking were characterized to demonstrate that reversible hydration of the elastin domains influenced the reversibility of the silk crosslinks.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering Tufts University, 4, Colby St., Medford, MA, 02155, USA; BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain.
| | - J C Rodriguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid-CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain.
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, 4, Colby St., Medford, MA, 02155, USA.
| |
Collapse
|
5
|
Development of an enhanced immunoassay based on protein nanoparticles displaying an IgG-binding domain and luciferase. Anal Bioanal Chem 2022; 414:2079-2088. [PMID: 35037082 DOI: 10.1007/s00216-021-03842-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022]
Abstract
Detection of small amounts of target molecules with high sensitivity is important for the diagnosis of many diseases, including cancers, and is particularly important to detect early stages of disease. Here, we report the development of a temperature-responsive fusion protein (ELP-DCN) comprised of an elastin-like polypeptide (ELP), poly-aspartic acid (D), antibody-binding domain C (C), and NanoLuc luciferase (N). ELP-DCN proteins form nanoparticles above a certain threshold temperature that display an antibody-binding domain and NanoLuc luciferase on their surface. ELP-DCN nanoparticles can be applied for enhancement of immunoassay systems because they provide more antibody-binding sites and an increased number of luciferase molecules, resulting in an increase in assay signal. Here, we report the detection of human serum albumin (HSA) as a model protein using anti-HSA and ELP-DCN proteins. Upon formation of ELP-DCN nanoparticles, the detection limit improved tenfold compared to the monomeric form of ELP-DCN.
Collapse
|
6
|
Luzuriaga MA, Herbert FC, Brohlin OR, Gadhvi J, Howlett T, Shahrivarkevishahi A, Wijesundara YH, Venkitapathi S, Veera K, Ehrman R, Benjamin CE, Popal S, Burton MD, Ingersoll MA, De Nisco NJ, Gassensmith JJ. Metal-Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS NANO 2021; 15:17426-17438. [PMID: 34546723 DOI: 10.1021/acsnano.1c03092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing rate of resistance of bacterial infection against antibiotics requires next generation approaches to fight potential pandemic spread. The development of vaccines against pathogenic bacteria has been difficult owing, in part, to the genetic diversity of bacteria. Hence, there are many potential target antigens and little a priori knowledge of which antigen/s will elicit protective immunity. The painstaking process of selecting appropriate antigens could be avoided with whole-cell bacteria; however, whole-cell formulations typically fail to produce long-term and durable immune responses. These complications are one reason why no vaccine against any type of pathogenic E. coli has been successfully clinically translated. As a proof of principle, we demonstrate a method to enhance the immunogenicity of a model pathogenic E. coli strain by forming a slow releasing depot. The E. coli strain CFT073 was biomimetically mineralized within a metal-organic framework (MOF). This process encapsulates the bacteria within 30 min in water and at ambient temperatures. Vaccination with this formulation substantially enhances antibody production and results in significantly enhanced survival in a mouse model of bacteremia compared to standard inactivated formulations.
Collapse
|
7
|
Kouhi A, Yao Z, Zheng L, Li Z, Hu P, Epstein AL, MacKay JA. Generation of a Monoclonal Antibody to Detect Elastin-like Polypeptides. Biomacromolecules 2019; 20:2942-2952. [PMID: 31276401 DOI: 10.1021/acs.biomac.9b00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The identification and use of antibodies dominate the biologic, clinical diagnostic, and therapeutic landscapes. In particular, antibodies have become essential tools in a variety of protein analytical experiments and to study the disposition of biologic therapeutics. One emerging class of peptide biologics is known as the elastin-like polypeptides (ELPs), which are repetitive protein polymers inspired by human tropoelastin. A major limitation in the clinical translation of ELP biologics has been a lack of a monoclonal antibody (mAb) to characterize their identity during expression. To facilitate these studies, we successfully generated a new mAb that is specific toward ELPs and ELP fusion proteins. A purified antibody was evaluated in an ELISA, western blotting, and immunofluorescence assay. The optimal anti-ELP mAb proved to be highly reactive and specific toward ELPs. Moreover, they were able to detect ELPs with a variety of aliphatic guest residues. ELPs phase-separate in response to heating; furthermore, when incubated at a great excess of ELPs, the anti-ELP mAb partially blocks phase separation. These findings are direct evidence that novel murine mAbs can be raised against purified ELPs. This new reagent will enable purification, experimental detection, and characterization of these biopolymers.
Collapse
|