1
|
An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14:1394. [PMID: 36914633 PMCID: PMC10011572 DOI: 10.1038/s41467-023-37029-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
Collapse
|
2
|
Stüber JC, Richter CP, Bellón JS, Schwill M, König I, Schuler B, Piehler J, Plückthun A. Apoptosis-inducing anti-HER2 agents operate through oligomerization-induced receptor immobilization. Commun Biol 2021; 4:762. [PMID: 34155320 PMCID: PMC8217238 DOI: 10.1038/s42003-021-02253-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overexpression of the receptor tyrosine kinase HER2 plays a critical role in the development of various tumors. Biparatopic designed ankyrin repeat proteins (bipDARPins) potently induce apoptosis in HER2-addicted breast cancer cell lines. Here, we have investigated how the spatiotemporal receptor organization at the cell surface is modulated by these agents and is distinguished from other molecules, which do not elicit apoptosis. Binding of conventional antibodies is accompanied by moderate reduction of receptor mobility, in agreement with HER2 being dimerized by the bivalent IgG. In contrast, the most potent apoptosis-inducing bipDARPins lead to a dramatic arrest of HER2. Dual-color single-molecule tracking revealed that the HER2 "lockdown" by these bipDARPins is caused by the formation of HER2-DARPin oligomer chains, which are trapped in nanoscopic membrane domains. Our findings establish that efficient neutralization of receptor tyrosine kinase signaling can be achieved through intermolecular bipDARPin crosslinking alone, resulting in inactivated, locked-down bipDARPin-HER2 complexes.
Collapse
Affiliation(s)
- Jakob C Stüber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Martin Schwill
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Iwo König
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Roche Diagnostics Int. AG, Rotkreuz, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Kast F, Schwill M, Stüber JC, Pfundstein S, Nagy-Davidescu G, Rodríguez JMM, Seehusen F, Richter CP, Honegger A, Hartmann KP, Weber TG, Kroener F, Ernst P, Piehler J, Plückthun A. Engineering an anti-HER2 biparatopic antibody with a multimodal mechanism of action. Nat Commun 2021; 12:3790. [PMID: 34145240 PMCID: PMC8213836 DOI: 10.1038/s41467-021-23948-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
The receptor tyrosine kinase HER2 acts as oncogenic driver in numerous cancers. Usually, the gene is amplified, resulting in receptor overexpression, massively increased signaling and unchecked proliferation. However, tumors become frequently addicted to oncogenes and hence are druggable by targeted interventions. Here, we design an anti-HER2 biparatopic and tetravalent IgG fusion with a multimodal mechanism of action. The molecule first induces HER2 clustering into inactive complexes, evidenced by reduced mobility of surface HER2. However, in contrast to our earlier binders based on DARPins, clusters of HER2 are thereafter robustly internalized and quantitatively degraded. This multimodal mechanism of action is found only in few of the tetravalent constructs investigated, which must target specific epitopes on HER2 in a defined geometric arrangement. The inhibitory effect of our antibody as single agent surpasses the combination of trastuzumab and pertuzumab as well as its parental mAbs in vitro and it is effective in a xenograft model.
Collapse
Affiliation(s)
- Florian Kast
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Schwill
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- TOLREMO therapeutics AG, Muttenz, Switzerland
| | - Jakob C Stüber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Roche Innovation Center Munich, Penzberg, Germany
| | - Svende Pfundstein
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | | | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | | | | | | | | | - Patrick Ernst
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Dean's Office and Coordination Office of the Academic Medicine Zurich, University of Zurich, Zurich, Switzerland
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Orel VB, Syvak LA, Orel VE. Remote control of magnetic nanocomplexes for delivery and destruction of cancer cells. J Biomater Appl 2021; 36:872-881. [PMID: 33840254 DOI: 10.1177/08853282211005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although nanotechnology advances have been exploited for a myriad of purposes, including cancer diagnostics and treatment, still there is little discussion about the mechanisms of remote control. Our main aim here is to explain the possibility of a magnetic field control over magnetic nanocomplexes to improve their delivery, controlled release and antitumor activity. In doing so we considered the nonlinear dynamics of magnetomechanical and magnetochemical effects based on free radical mechanisms in cancer development for future pre-clinical studies.
Collapse
|
5
|
Gidley F, Parmeggiani F. Repeat proteins: designing new shapes and functions for solenoid folds. Curr Opin Struct Biol 2021; 68:208-214. [PMID: 33721772 DOI: 10.1016/j.sbi.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
The modular nature of repeat proteins has inspired the design of regular and completely novel sequences and structures. Research in the past years has provided a broad set of design approaches and new repeat proteins that have found applications in molecular recognition, taking advantage of the natural ability of some of these families to bind proteins, peptides and nucleic acids. Here, we provide an overview on the recent trends in design of repeat proteins, particularly solenoid folds, and their applications. By exploiting the intrinsic modularity of repeats, new architectures have been designed that combine different types of repeat, are easily scalable by changing the number of repeats and can be quickly generated by using existing modular building blocks.
Collapse
Affiliation(s)
- Frances Gidley
- School of Chemistry, School of Biochemistry, Bristol Biodesign Institute, University of Bristol, United Kingdom
| | - Fabio Parmeggiani
- School of Chemistry, School of Biochemistry, Bristol Biodesign Institute, University of Bristol, United Kingdom.
| |
Collapse
|
6
|
Darowski D, Jost C, Stubenrauch K, Wessels U, Benz J, Ehler A, Freimoser-Grundschober A, Brünker P, Mössner E, Umaña P, Kobold S, Klein C. P329G-CAR-J: a novel Jurkat-NFAT-based CAR-T reporter system recognizing the P329G Fc mutation. Protein Eng Des Sel 2020; 32:207-218. [PMID: 31504896 DOI: 10.1093/protein/gzz027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibody-based therapeutics are an integral part of treatment of different human diseases, and the selection of suitable antibody candidates during the discovery phase is essential. Here, we describe a novel, cellular screening approach for the identification and characterization of therapeutic antibodies suitable for conversion into T cell bispecific antibodies using chimeric antigen receptor (CAR) transduced Jurkat-NFAT-luciferase reporter cells (CAR-J). For that purpose, we equipped a Jurkat-NFAT reporter cell line with a universal CAR, based on a monoclonal antibody recognizing the P329G mutation in the Fc-part of effector-silenced human IgG1-antibodies. In addition to scFv-based second generation CARs, Fab-based CARs employing the P329G-binder were generated. Using these anti-P329G-CAR-J cells together with the respective P329G-mutated IgG1-antibodies, we established a system, which facilitates the rapid testing of therapeutic antibody candidates in a flexible, high throughput setting during early stage discovery. We show that both, scFv- and Fab-based anti-P329G-CAR-J cells elicit a robust and dose-dependent luciferase signal if the respective antibody acts as an adaptor between tumor target and P329G-CAR-J cells. Importantly, we could demonstrate that functional characteristics of the antibody candidates, derived from the anti-P329G-CAR-J screening assay, are predictive for the functionality of these antibodies in the T cell bispecific antibody format.
Collapse
Affiliation(s)
- Diana Darowski
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Christian Jost
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Kay Stubenrauch
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Nonnenwald 2 DE-82377 Penzberg, Germany
| | - Uwe Wessels
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Nonnenwald 2 DE-82377 Penzberg, Germany
| | - Jörg Benz
- Roche Innovation Center Basel, Roche Pharma Research & Early Development, Grenzacherstrasse 124 CH-4070 Basel, Switzerland
| | - Andreas Ehler
- Roche Innovation Center Basel, Roche Pharma Research & Early Development, Grenzacherstrasse 124 CH-4070 Basel, Switzerland
| | - Anne Freimoser-Grundschober
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Peter Brünker
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Sebastian Kobold
- Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Lindwurmstraße 2a, 80337 Munich, Germany
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| |
Collapse
|
7
|
Mittl PR, Ernst P, Plückthun A. Chaperone-assisted structure elucidation with DARPins. Curr Opin Struct Biol 2020; 60:93-100. [PMID: 31918361 DOI: 10.1016/j.sbi.2019.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) are artificial binding proteins that have found many uses in therapy, diagnostics and biochemical research. They substantially extend the scope of antibody-derived binders. Their high affinity and specificity, rigidity, extended paratope, and facile bacterial production make them attractive for structural biology. Complexes with simple DARPins have been crystallized for a long time, but particularly the rigid helix fusion strategy has opened new opportunities. Rigid DARPin fusions expand crystallization space, enable recruitment of targets in a host lattice and reduce the size limit for cryo-EM. Besides applications in structural biology, rigid DARPin fusions also serve as molecular probes in cells to investigate spatial restraints in targets.
Collapse
Affiliation(s)
- Peer Re Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
8
|
Ernst P, Honegger A, van der Valk F, Ewald C, Mittl PRE, Plückthun A. Rigid fusions of designed helical repeat binding proteins efficiently protect a binding surface from crystal contacts. Sci Rep 2019; 9:16162. [PMID: 31700118 PMCID: PMC6838082 DOI: 10.1038/s41598-019-52121-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Designed armadillo repeat proteins (dArmRPs) bind extended peptides in a modular way. The consensus version recognises alternating arginines and lysines, with one dipeptide per repeat. For generating new binding specificities, the rapid and robust analysis by crystallography is key. Yet, we have previously found that crystal contacts can strongly influence this analysis, by displacing the peptide and potentially distorting the overall geometry of the scaffold. Therefore, we now used protein design to minimise these effects and expand the previously described concept of shared helices to rigidly connect dArmRPs and designed ankyrin repeat proteins (DARPins), which serve as a crystallisation chaperone. To shield the peptide-binding surface from crystal contacts, we rigidly fused two DARPins to the N- and C-terminal repeat of the dArmRP and linked the two DARPins by a disulfide bond. In this ring-like structure, peptide binding, on the inside of the ring, is very regular and undistorted, highlighting the truly modular binding mode. Thus, protein design was utilised to construct a well crystallising scaffold that prevents interference from crystal contacts with peptide binding and maintains the equilibrium structure of the dArmRP. Rigid DARPin-dArmRPs fusions will also be useful when chimeric binding proteins with predefined geometries are required.
Collapse
Affiliation(s)
- Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Annemarie Honegger
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Floor van der Valk
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Christina Ewald
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Cytometry Facility, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
9
|
Stüber JC, Kast F, Plückthun A. High-Throughput Quantification of Surface Protein Internalization and Degradation. ACS Chem Biol 2019; 14:1154-1163. [PMID: 31050891 DOI: 10.1021/acschembio.9b00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell surface proteins are key regulators of fundamental cellular processes and, therefore, often at the root of human diseases. Thus, a large number of targeted drugs which are approved or under development act upon cell surface proteins. Although down-regulation of surface proteins by many natural ligands is well-established, the ability of drug candidates to cause internalization or degradation of the target is only recently moving into focus. This property is important both for the pharmacokinetics and pharmacodynamics of the drug but may also constitute a potential resistance mechanism. The enormous numbers of drug candidates targeting cell surface molecules, comprising small molecules, antibodies, or alternative protein scaffolds, necessitate methods for the investigation of internalization and degradation in high throughput. Here, we present a generic high-throughput assay protocol, which allows the simultaneous and independent quantification of internalization and degradation of surface proteins on a single-cell level. Because we fuse a HaloTag to the cell surface protein of interest and exploit the differential cell permeability of two fluorescent HaloTag ligands, no labeling of the molecules to be screened is required. In contrast to previously described approaches, our homogeneous assay is performed with adherent live cells in a 96-well format. Through channel rescaling, we are furthermore able to obtain true relative abundances of surface and internal protein. We demonstrate the applicability of our procedure to three major drug targets, EGFR, HER2, and EpCAM, examining a selection of well-investigated but also novel small molecule ligands and protein affinity reagents.
Collapse
Affiliation(s)
- Jakob C. Stüber
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
10
|
Rigidly connected multispecific artificial binders with adjustable geometries. Sci Rep 2017; 7:11217. [PMID: 28894181 PMCID: PMC5593856 DOI: 10.1038/s41598-017-11472-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Multivalent binding proteins can gain biological activities beyond what is inherent in the individual binders, by bringing together different target molecules, restricting their conformational flexibility or changing their subcellular localization. In this study, we demonstrate a method to build up rigid multivalent and multispecific scaffolds by exploiting the modular nature of a repeat protein scaffold and avoiding flexible linkers. We use DARPins (Designed Ankyrin Repeat Proteins), synthetic binding proteins based on the Ankyrin-repeat protein scaffold, as binding units. Their ease of in vitro selection, high production yield and stability make them ideal specificity-conferring building blocks for the design of more complex constructs. C- and N-terminal DARPin capping repeats were re-designed to be joined by a shared helix in such a way that rigid connector modules are formed. This allows us to join two or more DARPins in predefined geometries without compromising their binding affinities and specificities. Nine connector modules with distinct geometries were designed; for eight of these we were able to confirm the structure by X-ray crystallography, while only one did not crystallize. The bispecific constructs were all able to bind both target proteins simultaneously.
Collapse
|