1
|
da Silva AS, Adriani PP, de Oliveira GS, Rocha ARL, Perpétuo EA, Dias MVB, Chambergo FS. Biochemical characterization of an esterase from Thermobifida fusca YX with acetyl xylan esterase activity. Mol Biol Rep 2024; 51:767. [PMID: 38878205 DOI: 10.1007/s11033-024-09601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Esterases (EC 3.1.1.X) are enzymes that catalyze the hydrolysis ester bonds. These enzymes have large potential for diverse applications in fine industries, particularly in pharmaceuticals, cosmetics, and bioethanol production. METHODS AND RESULTS In this study, a gene encoding an esterase from Thermobifida fusca YX (TfEst) was successfully cloned, and its product was overexpressed in Escherichia coli and purified using affinity chromatography. The TfEst kinetic assay revealed catalytic efficiencies of 0.58 s-1 mM-1, 1.09 s-1 mM-1, and 0.062 s-1 mM-1 against p-Nitrophenyl acetate, p-Nitrophenyl butyrate, and 1-naphthyl acetate substrates, respectively. Furthermore, TfEst also exhibited activity in a pH range from 6.0 to 10.0, with maximum activity at pH 8.0. The enzyme demonstrated a half-life of 20 min at 70 °C. Notably, TfEst displayed acetyl xylan esterase activity as evidenced by the acetylated xylan assay. The structural prediction of TfEst using AlphaFold indicated that has an α/β-hydrolase fold, which is consistent with other esterases. CONCLUSIONS The enzyme stability over a broad pH range and its activity at elevated temperatures make it an appealing candidate for industrial processes. Overall, TfEst emerges as a promising enzymatic tool with significant implications for the advancement of biotechnology and biofuels industries.
Collapse
Affiliation(s)
- Adriana S da Silva
- Escola de Artes, Ciências e HumanidadesErmelino Matarazzo, Universidade de São Paulo, 1000 Av. Arlindo Bettio, São Paulo, CEP: 3828-000, Brazil
| | - Patricia P Adriani
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel S de Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Elen A Perpétuo
- Bio4Tec, Centro de Capacitação e Pesquisa em Meio Ambiente, CEPEMA-POLI-USP, Universidade de São Paulo, Cubatão, Brazil
- Institute of Marine Sciences (IMar), Federal University of Sao Paulo, Santos, Brazil
| | - Marcio V B Dias
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe S Chambergo
- Escola de Artes, Ciências e HumanidadesErmelino Matarazzo, Universidade de São Paulo, 1000 Av. Arlindo Bettio, São Paulo, CEP: 3828-000, Brazil.
| |
Collapse
|
2
|
Rong Y, Jensen SI, Lindorff-Larsen K, Nielsen AT. Folding of heterologous proteins in bacterial cell factories: Cellular mechanisms and engineering strategies. Biotechnol Adv 2023; 63:108079. [PMID: 36528238 DOI: 10.1016/j.biotechadv.2022.108079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The expression of correctly folded and functional heterologous proteins is important in many biotechnological production processes, whether it is enzymes, biopharmaceuticals or biosynthetic pathways for production of sustainable chemicals. For industrial applications, bacterial platform organisms, such as E. coli, are still broadly used due to the availability of tools and proven suitability at industrial scale. However, expression of heterologous proteins in these organisms can result in protein aggregation and low amounts of functional protein. This review provides an overview of the cellular mechanisms that can influence protein folding and expression, such as co-translational folding and assembly, chaperone binding, as well as protein quality control, across different model organisms. The knowledge of these mechanisms is then linked to different experimental methods that have been applied in order to improve functional heterologous protein folding, such as codon optimization, fusion tagging, chaperone co-production, as well as strain and protein engineering strategies.
Collapse
Affiliation(s)
- Yixin Rong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Karaseva AI, Elcheninov AG, Perevalova AA, Zayulina KS, Kochetkova TV, Kublanov IV. Fervidicoccus fontis Strain 3639Fd, the First Crenarchaeon Capable of Growth on Lipids. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172104007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract—
Up to now, ability of prokaryotes to grow on lipids has been shown only for bacteria. Thermococcus sibiricus, member of the phylum Euryarchaeota isolated from a high-temperature oil well and capable of growth on olive oil, is the only exception. The present work reports isolation of a pure culture of a strictly anaerobic archaeon, strain 3639Fd (=VKM B-3509, =KCTC 25228) from a Kamchatka thermal spring, capable of growth on various lipids (tributyrin, triolein, and sesame, cottonseed, and sunflower oil) at 70°C and pH 5.5–6.0. Growth on tributyrin resulted in formation of butyrate, CO2, and hydrogen. According to the results of the 16S rRNA gene sequence analysis and in silico DNA–DNA hybridization, the isolate was classified as a strain of Fervidicoccus fontis, an archaeon of the phylum Crenarchaeota. The closest characterized homologs of the α/β-hydrolases, encoded in the genomes of F. fontis 3639Fd and of the type strain of this species, Kam940T, were various carboxyl esterases (EC 3.1.1), the enzymes responsible for lipid hydrolysis. Thus, F. fontis is the first crenarchaeon able to obtain energy by hydrolysis of lipid substrates.
Collapse
|
4
|
Feng X, Liu X, Xu R, Zhao R, Feng W, Liao J, Han W, She Q. A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota. Front Microbiol 2020; 11:1585. [PMID: 32793138 PMCID: PMC7390963 DOI: 10.3389/fmicb.2020.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaotong Liu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruiliang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenqian Feng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianglan Liao
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Gong P, Lei P, Wang S, Zeng A, Lou H. Post-Translational Modifications Aid Archaeal Survival. Biomolecules 2020; 10:biom10040584. [PMID: 32290118 PMCID: PMC7226565 DOI: 10.3390/biom10040584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Since the pioneering work of Carl Woese, Archaea have fascinated biologists of almost all areas given their unique evolutionary status, wide distribution, high diversity, and ability to grow in special environments. Archaea often thrive in extreme conditions such as high temperature, high/low pH, high salinity, and anoxic ecosystems. All of these are threats to the stability and proper functioning of biological molecules, especially proteins and nucleic acids. Post-translational modifications (PTMs), such as phosphorylation, methylation, acetylation, and glycosylation, are reportedly widespread in Archaea and represent a critical adaptive mechanism to extreme habitats. Here, we summarize our current understanding of the contributions of PTMs to aid in extremophile survival, with a particular focus on the maintenance of genome stability.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
- Correspondence: (P.G.); (H.L.)
| | - Ping Lei
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Ao Zeng
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
- Correspondence: (P.G.); (H.L.)
| |
Collapse
|
6
|
Feng K, Yang Y, Xu Y, Zhang Y, Feng T, Huang S, Liu J, Zeng Y. A Hydrolase‐Catalyzed Cyclization Forms the Fused Bicyclic β‐Lactone in Vibralactone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ke‐Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan‐Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| | - Yu‐Xing Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Feng
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 Hubei China
| | - Sheng‐Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| | - Ji‐Kai Liu
- School of Pharmaceutical SciencesSouth-Central University for Nationalities Wuhan 430074 Hubei China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaYunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of Sciences Kunming 650201 Yunnan China
| |
Collapse
|
7
|
Feng K, Yang Y, Xu Y, Zhang Y, Feng T, Huang S, Liu J, Zeng Y. A Hydrolase‐Catalyzed Cyclization Forms the Fused Bicyclic β‐Lactone in Vibralactone. Angew Chem Int Ed Engl 2020; 59:7209-7213. [PMID: 32050043 DOI: 10.1002/anie.202000710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Ke‐Na Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan‐Long Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| | - Yu‐Xing Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yue Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tao Feng
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 Hubei China
| | - Sheng‐Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| | - Ji‐Kai Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 Hubei China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 Yunnan China
| |
Collapse
|