1
|
Kumari S, Sharma P, Ghosh D, Shandilya M, Rawat P, Hassan MI, Moulick RG, Bhattacharya J, Srivastava C, Majumder S. Time-dependent study of graphene oxide-trypsin adsorption interface and visualization of nano-protein corona. Int J Biol Macromol 2020; 163:2259-2269. [PMID: 32961193 DOI: 10.1016/j.ijbiomac.2020.09.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 01/17/2023]
Abstract
Understanding of interactions of nanomaterials with biomolecules (especially proteins) is of great importance to the area of nanobiotechnology. Graphene and its derivative such as graphene oxide (GO), are two-dimensional (2-D) nanomaterials with remarkable physical and chemical properties and have been broadly explored in biotechnology and biomedical application. Here, we have reported the nature of adsorption of trypsin on the GO surface, considering its biomedical implications. A simple incubation of trypsin on GO surface exhibits varying resistance to autolysis. The structural morphology of trypsin on the GO surface was studied by using atomic force microscopy (AFM), circular dichroism (CD), fluorescence, and total internal reflection fluorescence (TIRF) microscopies. Results suggest that the trypsin follows the Freundlich Isotherm. By the Langmuir model, the maximum adsorption capacity was found to be 100 mg/g. From protein assay results we have concluded that the native trypsin exhibits the highest catalytic efficiency (33.97*104 L mol-1 min-1) in comparison to other Trp-GO constructs. We have further visualized morphological change on GO-trypsin interface throughout the adsorption process by taking samples at definite time intervals, which suggests that the interaction of trypsin with GO is an example of the soft corona. Our findings may be implicated in enzyme engineering as well as enzyme-based bio-sensing applications.
Collapse
Affiliation(s)
- Sujata Kumari
- Department of Chemistry, Amity School of Applied Science, Amity University Haryana, Haryana 122413, India
| | - Pratibha Sharma
- Department of Chemistry, Amity School of Applied Science, Amity University Haryana, Haryana 122413, India
| | - Debasree Ghosh
- Department of Chemistry, Amity School of Applied Science, Amity University Haryana, Haryana 122413, India
| | - Manish Shandilya
- Department of Chemistry, Amity School of Applied Science, Amity University Haryana, Haryana 122413, India
| | - Pooja Rawat
- Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yong- In, Gyong-gi 17104, Republic of Korea
| | - Md Imtaiyaz Hassan
- Center of Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - Ranjita Ghosh Moulick
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Haryana 122413, India
| | | | - Chandramohan Srivastava
- Department of Chemistry, Amity School of Applied Science, Amity University Haryana, Haryana 122413, India.
| | - Sudip Majumder
- Department of Chemistry, Amity School of Applied Science, Amity University Haryana, Haryana 122413, India.
| |
Collapse
|
2
|
Boros E, Sebák F, Héja D, Szakács D, Zboray K, Schlosser G, Micsonai A, Kardos J, Bodor A, Pál G. Directed Evolution of Canonical Loops and Their Swapping between Unrelated Serine Proteinase Inhibitors Disprove the Interscaffolding Additivity Model. J Mol Biol 2019; 431:557-575. [PMID: 30543823 DOI: 10.1016/j.jmb.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022]
Abstract
Reversible serine proteinase inhibitors comprise 18 unrelated families. Each family has a distinct representative structure but contains a surface loop that adopts the same, canonical conformation in the enzyme-inhibitor complex. The Laskowski mechanism universally applies for the action of all canonical inhibitors independent of their scaffold, but it has two nontrivial extrapolations. Intrascaffolding additivity states that all enzyme-contacting loop residues act independently of each other, while interscaffolding additivity claims that these residues act independently of the scaffold. These theories have great importance for engineering proteinase inhibitors but have not been comprehensively challenged. Therefore, we tested the interscaffolding additivity theory by hard-randomizing all enzyme-contacting canonical loop positions of a Kazal- and a Pacifastin-scaffold inhibitor, displaying the variants on M13 phage, and selecting the libraries on trypsin and chymotrypsin. Directed evolution delivered different patterns on both scaffolds against both enzymes, which contradicts interscaffolding additivity. To quantitatively assess the extent of non-additivity, we measured the affinities of the optimal binding loop variants and their binding loop-swapped versions. While optimal variants have picomolar affinities, swapping the evolved loops results in up to 200,000-fold affinity loss. To decipher the underlying causes, we characterized the stability, overall structure and dynamics of the inhibitors with differential scanning calorimetry, circular dichroism and NMR spectroscopy and molecular dynamic simulations. These studies revealed that the foreign loop destabilizes the lower-stability Pacifastin scaffold, while the higher-stability Kazal scaffold distorts the foreign loop. Our findings disprove interscaffolding additivity and show that loop and scaffold form one integrated unit that needs to be coevolved to provide high-affinity inhibition.
Collapse
Affiliation(s)
- Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Fanni Sebák
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Dávid Héja
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Dávid Szakács
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Zboray
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
3
|
Datta Sharma R, Goswami N, Ghosh D, Majumder S. Understanding the molecular basis of stability in Kunitz (STI) family of inhibitors in terms of a conserved core tryptophan residue: A theoretical investigation. J Mol Graph Model 2017; 75:233-240. [PMID: 28600973 DOI: 10.1016/j.jmgm.2017.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
β-trefoil is one of the superfolds among proteins. Important classes of proteins like Interleukins (ILs), FibroblastGrowth Factors (FGFs), Kunitz (STI) family of inhibitors etc. belong to this fold. Kunitz (STI) family of inhibitors of proteins possess a highly conserved and structurally important Trytophan 91 (W91) residue, which stitches the top layer of the barrel with the lid. In this article we have investigated the molecular insights of the involvement of this W91 residue in the stability and folding pathway of Kunitz (STI) family. Winged bean Chymotrypsin inhibitor (WCI), a member of Kunitz (STI) family was chosen as a model system for carrying out the work. Molecular dynamics (MD) simulations were run with a set of total six proteins, including wild type WCI (WT) & five mutants namely W91F, W91M, W91A, W91H and W91I. Among all of them the coordinates of four proteins were taken from their crystal structures deposited in the Protein Data Bank (PDB), where as the coordinates for the rest two was generated using in-silico modelling. Our results suggest that truly this W91 residue plays a determining role in stability and folding pathway of Kunitz (STI) family. The mutants are less stable and more susceptible to quicker unfolding at higher temperatures compared to the wild type WCI. These effects are most pronounced for the smallest mutants namely W91H and W91A, indicating more is the cavity created by mutation at W91 position more the proteins becomes unstable.
Collapse
Affiliation(s)
- Ravi Datta Sharma
- Amity Institute of Biotechnology (AIB), Amity University Haryana, India; Amity Institute of Intgerative Sciences and Health (AIISH), Amity University Haryana, NH-8, Panchgaon, Gurgaon, 122413, India
| | - Nabajyoti Goswami
- Bioinformatics Infrastructure Facility (BIF), College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022, India
| | - Debasree Ghosh
- Amity Institute of Nanotechnology, Amity University Haryana, India
| | - Sudip Majumder
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, India.
| |
Collapse
|
4
|
A conserved tryptophan (W91) at the barrel-lid junction modulates the packing and stability of Kunitz (STI) family of inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:55-64. [DOI: 10.1016/j.bbapap.2014.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/09/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022]
|
5
|
Žurga S, Pohleven J, Renko M, Bleuler-Martinez S, Sosnowski P, Turk D, Künzler M, Kos J, Sabotič J. A novel β-trefoil lectin from the parasol mushroom (Macrolepiota procera) is nematotoxic. FEBS J 2014; 281:3489-506. [PMID: 24930858 DOI: 10.1111/febs.12875] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Lectins are carbohydrate-binding proteins present in all organisms. Some cytoplasmic lectins from fruiting bodies of dikaryotic fungi are toxic against a variety of parasites and predators. We have isolated, cloned and expressed a novel, single domain lectin from Macrolepiota procera, designated MpL. Determination of the crystal structure revealed that MpL is a ricin B-like lectin with a β-trefoil fold. Biochemical characterization, site-directed mutagenesis, co-crystallization with carbohydrates, isothermal titration calorimetry and glycan microarray analyses show that MpL forms dimers with the carbohydrate-binding site at the α-repeat, with the highest specificity for terminal N-acetyllactosamine and other β-galactosides. A second putative carbohydrate-binding site with a low affinity for galactose is present at the γ-repeat. In addition, a novel hydrophobic binding site was detected in MpL with specificity for molecules other than carbohydrates. The tissue specific distribution of MpL in the stipe and cap tissue of fruiting bodies and its toxicity towards the nematode Caenorhabditis elegans indicate a function of MpL in protecting fruiting bodies against predators and parasites. DATABASE Nucleotide sequence data have been deposited in the DDBJ/EMBL/GenBank databases under accession numbers HQ449738 and HQ449739. Structural data have been deposited in the Protein Data Bank under accession codes 4ION, 4IYB, 4IZX and 4J2S.
Collapse
Affiliation(s)
- Simon Žurga
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Majumder S, Khamrui S, Dasgupta J, Dattagupta JK, Sen U. Role of remote scaffolding residues in the inhibitory loop pre-organization, flexibility, rigidification and enzyme inhibition of serine protease inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:882-90. [PMID: 22709512 DOI: 10.1016/j.bbapap.2012.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/22/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
Canonical serine protease inhibitors interact with cognate enzymes through the P3-P2' region of the inhibitory loop while its scaffold hardly makes any contact. Neighboring scaffolding residues like Arginines or Asparagine shape-up the inhibitory loop and favor the resynthesis of cleaved scissile bond. However, role of remote scaffolding residues, which are not involved in religation, was not properly explored. Crystal structures of two engineered winged bean chymotrypsin inhibitor (WCI) complexed with Bovine trypsin (BPT) namely L65R-WCI:BPT and F64Y/L65R-WCI:BPT show that the inhibitory loop of these engineered inhibitors are recognized and rigidified properly at the enzyme active site like other strong trypsin inhibitors. Chimeric protein ETI(L)-WCI(S), having a loop of Erythrina caffra Trypsin Inhibitor, ETI on the scaffold of WCI, was previously shown to behave like substrate. Non-canonical structure of the inhibitory loop and its flexibility are attributed to the presence of smaller scaffolding residues which cannot act as barrier to the inhibitory loop like in ETI. Double mutant A76R/L115Y-(ETI(L)-WCI(S)), where the barrier is reintroduced on ETI(L)-WCI(S), shows regaining of inhibitory activity. The structure of A76R/L115Y-(ETI(L)-WCI(S)) along with L65R-WCI:BPT and F64Y/L65R-WCI:BPT demonstrate here that the lost canonical conformation of the inhibitory loop is fully restored and loop flexibility is dramatically reduced. Therefore, residues at the inhibitory loop interact with the enzyme playing the primary role in recognition and binding but scaffolding residues having no direct interaction with the enzyme are crucial for rigidification event and the inhibitory potency. B-factor analysis indicates that the amount of inhibitory loop rigidification varies between different inhibitor families.
Collapse
Affiliation(s)
- Sudip Majumder
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | | | |
Collapse
|