1
|
Dahiya D, Péter-Szabó Z, Senanayake M, Pingali SV, Leite WC, Byrnes J, Buchko GW, Sivan P, Vilaplana F, Master E, O'Neill H. SANS investigation of fungal loosenins reveal substrate dependent impacts of protein 1 action on inter-fibril distance and packing order of cellulosic substrates. RESEARCH SQUARE 2024:rs.3.rs-4769386. [PMID: 39184091 PMCID: PMC11343303 DOI: 10.21203/rs.3.rs-4769386/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
BACKGROUND Microbial expansin-related proteins include fungal loosenins, which have been previously shown to disrupt cellulose networks and enhance the enzymatic conversion of cellulosic substrates. Despite showing beneficial impacts to cellulose processing, detailed characterization of cellulosic materials after loosenin treatment is lacking. In this study, small-angle neutron scattering (SANS) was used to investigate the effects of three recombinantly produced loosenins that originate from Phanerochaete carnosa, PcaLOOL7, PcaLOOL9, and PcaLOOL12, on the organization of holocellulose preparations from Eucalyptus and Spruce wood samples. RESULTS Whereas the SANS analysis of Spruce holocellulose revealed an increase in interfibril spacing of neighboring cellulose microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL7, the analysis of Eucalyptus holocellulose revealed a reduction in packing number following treatment with PcaLOOL12 and to a lesser extent PcaLOOL9. Parallel SEC-SAXS characterization of PcaLOOL7, PcaLOOL9, and PcaLOOL12 indicated the proteins likely function as monomers; moreover, all appear to retain a flexible disordered N-terminus and folded C-terminal region. The comparatively high impact of PcaLOOL12 motivated its NMR structural characterization, revealing a double-psi b-barrel (DPBB) domain surrounded by three alpha-helices - the largest nestled against the DPBB core and the other two part of loops extending from the core. CONCLUSIONS The SANS analysis of PcaLOOL action on holocellulose samples confirms their ability to disrupt cellulose fiber networks and suggests a progression from reducing microfibril packing to increasing interfibril distance. The most impactful PcaLOOL, PcaLOOL12, was previously observed to be the most highly expressed loosenin in P. carnosa. Its structural characterization herein reveals its stabilization through two disulfide linkages, and an extended N-terminal region distal to a negatively charged and surface accessible polysaccharide binding groove.
Collapse
|
2
|
Bork I, Dombrowsky CS, Bitsch S, Happel D, Geyer FK, Avrutina O, Kolmar H. Tailor-Made Bioactive Papers by Site-Specific and Orthogonal Covalent Immobilization of Proteins. Biomacromolecules 2024; 25:5300-5309. [PMID: 39007485 DOI: 10.1021/acs.biomac.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A strategy for the bioorthogonal immobilization of proteins onto commercially available filter paper is presented. Recently, a two-step approach has been described that relies on covalent immobilization of a linker molecule to paper, followed by enzyme-mediated conjugation of a protein of interest containing an enzyme-recognition tag. Here, this strategy was expanded by evaluating four different chemical and chemoenzymatic reactions and investigating paper loading efficiency and orthogonality. Enhanced green fluorescent protein (EGFP) was used as a model protein to allow quantification of protein loading via fluorescence imaging. Two approaches were identified that showed significantly increased loading efficiencies compared with the previously applied conjugation strategy. Additionally, all four methods were proven orthogonal to each other, allowing simultaneous immobilization of a mixture of proteins to a premodified assembly of two paper sheets.
Collapse
Affiliation(s)
- Ingo Bork
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Carolin S Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Felix K Geyer
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
3
|
Wu R, Smith CA, Buchko GW, Blaby IK, Paez-Espino D, Kyrpides NC, Yoshikuni Y, McDermott JE, Hofmockel KS, Cort JR, Jansson JK. Structural characterization of a soil viral auxiliary metabolic gene product - a functional chitosanase. Nat Commun 2022; 13:5485. [PMID: 36123347 PMCID: PMC9485262 DOI: 10.1038/s41467-022-32993-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/26/2022] [Indexed: 11/12/2022] Open
Abstract
Metagenomics is unearthing the previously hidden world of soil viruses. Many soil viral sequences in metagenomes contain putative auxiliary metabolic genes (AMGs) that are not associated with viral replication. Here, we establish that AMGs on soil viruses actually produce functional, active proteins. We focus on AMGs that potentially encode chitosanase enzymes that metabolize chitin - a common carbon polymer. We express and functionally screen several chitosanase genes identified from environmental metagenomes. One expressed protein showing endo-chitosanase activity (V-Csn) is crystalized and structurally characterized at ultra-high resolution, thus representing the structure of a soil viral AMG product. This structure provides details about the active site, and together with structure models determined using AlphaFold, facilitates understanding of substrate specificity and enzyme mechanism. Our findings support the hypothesis that soil viruses contribute auxiliary functions to their hosts.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Clyde A Smith
- Stanford Synchrotron Radiation Light source, Stanford University, Menlo Park, CA, USA
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Ian K Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John R Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
4
|
Fuchsbauer HL. Approaching transglutaminase from Streptomyces bacteria over three decades. FEBS J 2021; 289:4680-4703. [PMID: 34102019 DOI: 10.1111/febs.16060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Transglutaminases are protein cross-linking and protein-modifying enzymes that have attracted considerable interest due to their causal involvement in various diseases and versatility in industrial applications. In particular, microbial transglutaminases (MTG) from Streptomyces bacteria have managed in recent years to evolve from simple food additives to specialized enzymes for the site-directed modification of therapeutic proteins. The review summarizes relevant studies from the beginning dealing with the occurrence, production, structure, catalysis, and substrate molecules of MTG enzymes. It also addresses biotechnological procedures with MTG from S. mobaraensis (SmMTG) as the most prominent representative in focus. Reassessment of the available data revealed unexpected insights into catalysis of SmMTG and other transglutaminases, suggesting selection of glutamine donor proteins by subsites at the front vestibule and the existence of distinct lysine pockets. Flexibility of the SmMTG-accessible glutamine donor substrate regions seems to be more important than the glutamine environment. Nevertheless, residues in close vicinity to glutamines also determine interaction with the SmMTG subsites. The apparent lack of subsites for lysine donor proteins suggests self-assembly of the substrate proteins prior to enzymatic cross-linking. The study of natural substrate proteins, especially their mutual interaction, is proposed to further illuminate catalysis of SmMTG. To this end, structure and function of the characterized substrate proteins from S. mobaraensis are discussed in conclusion.
Collapse
Affiliation(s)
- Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
5
|
Bolzati C, Spolaore B. Enzymatic Methods for the Site-Specific Radiolabeling of Targeting Proteins. Molecules 2021; 26:3492. [PMID: 34201280 PMCID: PMC8229434 DOI: 10.3390/molecules26123492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Site-specific conjugation of proteins is currently required to produce homogenous derivatives for medicine applications. Proteins derivatized at specific positions of the polypeptide chain can actually show higher stability, superior pharmacokinetics, and activity in vivo, as compared with conjugates modified at heterogeneous sites. Moreover, they can be better characterized regarding the composition of the derivatization sites as well as the conformational and activity properties. To this aim, several site-specific derivatization approaches have been developed. Among these, enzymes are powerful tools that efficiently allow the generation of homogenous protein-drug conjugates under physiological conditions, thus preserving their native structure and activity. This review will summarize the progress made over the last decade on the use of enzymatic-based methodologies for the production of site-specific labeled immunoconjugates of interest for nuclear medicine. Enzymes used in this field, including microbial transglutaminase, sortase, galactosyltransferase, and lipoic acid ligase, will be overviewed and their recent applications in the radiopharmaceutical field will be described. Since nuclear medicine can benefit greatly from the production of homogenous derivatives, we hope that this review will aid the use of enzymes for the development of better radio-conjugates for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, I-35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padua, Viale G. Colombo, 3, I-35131 Padova, Italy
| |
Collapse
|
6
|
Juettner NE, Bogen JP, Bauer TA, Knapp S, Pfeifer F, Huettenhain SH, Meusinger R, Kraemer A, Fuchsbauer HL. Decoding the Papain Inhibitor from Streptomyces mobaraensis as Being Hydroxylated Chymostatin Derivatives: Purification, Structure Analysis, and Putative Biosynthetic Pathway. JOURNAL OF NATURAL PRODUCTS 2020; 83:2983-2995. [PMID: 32998509 DOI: 10.1021/acs.jnatprod.0c00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streptomyces mobaraensis produces the papain inhibitor SPI consisting of a 12 kDa protein and small active compounds (SPIac). Purification of the papain inhibitory compounds resulted in four diverse chymostatin derivatives that were characterized by NMR and MS analysis. Chymostatins are hydrophobic tetrapeptide aldehydes from streptomycetes, e.g., S. lavendulae and S. hygroscopicus, that reverse chymosin-mediated angiotensin activation and inhibit other serine and cysteine proteases. Chymotrypsin and papain were both inhibited by the SPIac compounds in the low nanomolar range. SPIac differs from the characterized chymostatins by the exchange of phenylalanine for tyrosine. The crystal structure of one of these chymostatin variants confirmed its molecular structure and revealed a S-configured hemithioacetal bond with the catalytic Cys25 thiolate as well as close interactions with hydrophobic S1 and S2 subsite amino acids. A model for chymostatin biosynthesis is provided based on the discovery of clustered genes encoding several putative nonribosomal peptide synthetases; among them, there is the unusual CstF enzyme that accommodates two canonical amino acid activation domains as well as three peptide carrier protein domains.
Collapse
Affiliation(s)
- Norbert E Juettner
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
- The Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Jan P Bogen
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Tobias A Bauer
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Felicitas Pfeifer
- The Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Stefan H Huettenhain
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Reinhard Meusinger
- The Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Andreas Kraemer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Hans-Lothar Fuchsbauer
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| |
Collapse
|
7
|
Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates. Anal Biochem 2020; 595:113615. [PMID: 32035039 DOI: 10.1016/j.ab.2020.113615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
Antibody-drug conjugates (ADCs) are hybrid molecules intended to overcome the drawbacks of conventional small molecule chemotherapy and therapeutic antibodies by merging beneficial characteristics of both molecule classes to develop more efficient and patient-friendly options for cancer treatment. During the last decades a versatile bioconjugation toolbox that comprises numerous chemical and enzymatic technologies have been developed to covalently attach a cytotoxic cargo to a tumor-targeting antibody. Microbial transglutaminase (mTG) that catalyzes isopeptide bond formation between proteinaceous or peptidic glutamines and lysines, provides many favorable properties that are beneficial for the manufacturing of these conjugates. However, to efficiently utilize the enzyme for the constructions of ADCs, different drawbacks had to be overcome that originate from the enzyme's insufficiently understood substrate specificity. Within this review, pioneering methodologies, recent achievements and remaining limitations of mTG-assisted assembly of ADCs will be highlighted.
Collapse
|
8
|
Deweid L, Avrutina O, Kolmar H. Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem 2019; 400:257-274. [PMID: 30291779 DOI: 10.1515/hsz-2018-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Research on bacterial transglutaminase dates back to 1989, when the enzyme has been isolated from Streptomyces mobaraensis. Initially discovered during an extensive screening campaign to reduce costs in food manufacturing, it quickly appeared as a robust and versatile tool for biotechnological and pharmaceutical applications due to its excellent activity and simple handling. While pioneering attempts to make use of its extraordinary cross-linking ability resulted in heterogeneous polymers, currently it is applied to site-specifically ligate diverse biomolecules yielding precisely modified hybrid constructs comprising two or more components. This review covers the extensive and rapidly growing field of microbial transglutaminase-mediated bioconjugation with the focus on pharmaceutical research. In addition, engineering of the enzyme by directed evolution and rational design is highlighted. Moreover, cumbersome drawbacks of this technique mainly caused by the enzyme's substrate indiscrimination are discussed as well as the ways to bypass these limitations.
Collapse
Affiliation(s)
- Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| |
Collapse
|
9
|
Ebenig A, Juettner NE, Deweid L, Avrutina O, Fuchsbauer H, Kolmar H. Efficient Site‐Specific Antibody–Drug Conjugation by Engineering a Nature‐Derived Recognition Tag for Microbial Transglutaminase. Chembiochem 2019; 20:2411-2419. [DOI: 10.1002/cbic.201900101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Aileen Ebenig
- Institute for Organic Chemistry and BiochemistryTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Norbert Egon Juettner
- Department of Chemical Engineering and BiotechnologyUniversity of Applied Sciences Darmstadt Stephanstrasse 7 64295 Darmstadt Germany
- Department of BiologyTechnische Universität Darmstadt Schnittspahnstrasse 10 64287 Darmstadt Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and BiochemistryTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and BiochemistryTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Hans‐Lothar Fuchsbauer
- Department of Chemical Engineering and BiotechnologyUniversity of Applied Sciences Darmstadt Stephanstrasse 7 64295 Darmstadt Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnische Universität Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| |
Collapse
|
10
|
Juettner NE, Schmelz S, Anderl A, Colin F, Classen M, Pfeifer F, Scrima A, Fuchsbauer HL. The N-terminal peptide of the transglutaminase-activating metalloprotease inhibitor from Streptomyces mobaraensis accommodates both inhibition and glutamine cross-linking sites. FEBS J 2019; 287:708-720. [PMID: 31420998 DOI: 10.1111/febs.15044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/01/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
Streptomyces mobaraensis is a key player for the industrial production of the protein cross-linking enzyme microbial transglutaminase (MTG). Extra-cellular activation of MTG by the transglutaminase-activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross-linking are not determined. To address both issues, that is, determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N-terminal peptide by six and three residues respectively. Structural integrity of the mutants was verified by the determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N-terminally shortened variants clearly indicated the highly conserved Leu40-Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40-Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X-ray crystallography. While no structural data could be obtained for the N-terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analysed, which superposes well with SSI-family proteins. ENZYMES: Chymotrypsin, EC3.4.21.1; griselysin (SGMPII, SgmA), EC3.4.24.27; snapalysin (ScNP), EC3.4.24.77; streptogrisin-A (SGPA), EC3.4.21.80; streptogrisin-B (SGPB), EC3.4.21.81; subtilisin BPN', EC3.4.21.62; transglutaminase, EC2.3.2.13; transglutaminase-activating metalloprotease (TAMP), EC3.4.-.-; tri-/tetrapeptidyl aminopeptidase, EC3.4.11.-; trypsin, EC3.4.21.4. DATABASES: The atomic coordinates and structure factors (PDB 6I0I) have been deposited in the Protein Data Bank (http://www.rcsb.org).
Collapse
Affiliation(s)
- Norbert E Juettner
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany.,Department of Biology, Technische Universität Darmstadt, Germany
| | - Stefan Schmelz
- Structural Biology of Autophagy Group, Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Anita Anderl
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Felix Colin
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Moritz Classen
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | | | - Andrea Scrima
- Structural Biology of Autophagy Group, Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
11
|
Anderl A, Ferlemann C, Muth M, Henkel-Gupalo A, Ebenig A, Brenner-Weiß G, Kolmar H, Fuchsbauer HL. Biochemical study of sortase E2 from Streptomyces mobaraensis and determination of transglutaminase cross-linking sites. FEBS Lett 2019; 593:1944-1956. [PMID: 31155711 DOI: 10.1002/1873-3468.13466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Distinct streptomycetes such as Streptomyces mobaraensis produce the protein cross-linking enzyme transglutaminase. Bioinformatic analysis predicted the occurrence of seven sortases exerting transpeptidation reactions similarly to transglutaminase. Here, we report the production and characterization of sortase E2 (Sm-SrtE2) solubilized by removal of its membrane anchor domain. Sm-SrtE2 activity was measured using pentapeptides predicted to be cell wall sorting signals of putative sortase substrate proteins. Preferred linkage to Gly3 by Sm-SrtE2 was in the order LAETG>>LAHTG>>LAQTG~LANTG>LARTG. Chaplin 1 from S. mobaraensis was further demonstrated to be an excellent substrate of both the intrinsic Sm-SrtE2 and transglutaminase. The unexpected discovery showing Gln-62 and Gln-65 of Δ1-50 -Sm-SrtE2 as transglutaminase cross-linking sites suggests that low enzyme stability might be due to anchor domain truncation and a disordered N terminus.
Collapse
Affiliation(s)
- Anita Anderl
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany.,Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Cathrin Ferlemann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Marius Muth
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany.,Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany
| | - Antonina Henkel-Gupalo
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Aileen Ebenig
- Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Gerald Brenner-Weiß
- Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Germany
| | - Harald Kolmar
- Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
12
|
Bioengineering of microbial transglutaminase for biomedical applications. Appl Microbiol Biotechnol 2019; 103:2973-2984. [PMID: 30805670 DOI: 10.1007/s00253-019-09669-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
Collapse
|
13
|
Abstract
Microbial transglutaminase (mTG), a protein-glutamine γ-glutamyltransferase from Streptomyces mobaraensis, is an enzyme capable of forming isopeptide bonds between the nearly inert (from the chemical point of view) γ-carboxamides present in the side chain of glutamine residues and primary amines. Its high substrate tolerance, compared to other bond-forming enzymes, makes it a versatile tool for numerous applications including food manufacturing, material science, and biotechnology. Although an mTG-mediated bioconjugation is a well-established technique, some major drawbacks of this approach need to be bypassed, with the poor substrate specificity being among the most essential ones. Especially biopharmaceutical methodologies require high subsite specificity of the utilized biocatalyst, which is often not warranted by mTG. Therefore, access to tailor-made transglutaminases is strongly desired. Herein, we describe a protocol for the generation of mTG libraries based on yeast surface display, which allow for the isolation of mutants with altered properties. Moreover, methods for cloning of respective expression vectors, recombinant expression, and in vitro procession are provided.
Collapse
Affiliation(s)
- Lukas Deweid
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
14
|
Juettner NE, Schmelz S, Kraemer A, Knapp S, Becker B, Kolmar H, Scrima A, Fuchsbauer HL. Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase. FEBS J 2018; 285:4684-4694. [PMID: 30318745 DOI: 10.1111/febs.14678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023]
Abstract
The protein cross-linking enzyme transglutaminase from Streptomyces mobaraensis (MTG) is frequently used to modify therapeutic proteins. In order to reveal the binding mode of glutamine donor substrates, we have now crystallized MTG covalently linked to large inhibitory peptides. A series of peptide structures were examined but DIPIGSKMTG, which was chloroacetylated at serine, was the only inhibitory molecule that resulted in an interpretable density map. We found that, besides the warhead (modified Ser6), Ile4 and Gly5 of the inhibitory peptide occupy the tight but extended hydrophobic bottom of the MTG-binding cleft. Both termini of the peptide protrude along the cleft walls almost perpendicular to the bottom of the extended cleft. This peptide model suggests a zipper-like cross-linking mechanism of self-assembled substrate proteins by MTG.
Collapse
Affiliation(s)
- Norbert E Juettner
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| | - Stefan Schmelz
- Structural Biology of Autophagy Group, Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Andreas Kraemer
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt, Germany
| | - Bastian Becker
- Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Harald Kolmar
- Department of Chemistry, Technische Universität Darmstadt, Germany
| | - Andrea Scrima
- Structural Biology of Autophagy Group, Department Structure and Function of Proteins, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
15
|
Juettner NE, Classen M, Colin F, Hoffmann SB, Meyners C, Pfeifer F, Fuchsbauer HL. Features of the transglutaminase-activating metalloprotease from Streptomyces mobaraensis DSM 40847 produced in Escherichia coli. J Biotechnol 2018; 281:115-122. [PMID: 29981445 DOI: 10.1016/j.jbiotec.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023]
Abstract
Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for numerous industrial applications. Recombinant production requires proteolytic activation of the zymogen. The study provides a convenient procedure for the preparation of the transglutaminase-activating metalloprotease (TAMP) in Escherichia coli. In contrast to wtTAMP, rTAMP exhibited the P domain of convertases as molecular mass of 55.7 kDa suggested. Protein integrity was beneficially influenced by 2-5 mM CaCl2. Study of pH and temperature optima assigned rTAMP to the neutral metalloproteases, more heat-resistant than Dispase but not thermolysin. Zinc had no inhibiting effect but 3.1 μM EDTA completely reduced activity of 5 nM TAMP. MTG, exceeding concentration of rTAMP by three orders of magnitude, was largely activated within few minutes. The kinetic parameters KM (1.31 ± 0.05 mM) and kcat (135 ± 4.3 s-1), monitored by isothermal titration calorimetry (ITC), further highlighted catalytic efficiency (103,053 M-1 s-1) of rTAMP and rapid processing of MTG. ITC even revealed that inhibition of rTAMP by its intrinsic inhibitory protein SSTI was an enthalpy-driven process resulting in Kd of 199 ± 37.9 nM. The production procedure of rTAMP in E. coli closes the gap between production and application of recombinant MTG and may enhance relevance of MTG-mediated reactions in pharmaceutical processes.
Collapse
Affiliation(s)
- Norbert E Juettner
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany; Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Moritz Classen
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany
| | - Felix Colin
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany
| | - Sascha B Hoffmann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany
| | - Christian Meyners
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany
| | - Felicitas Pfeifer
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany.
| |
Collapse
|