1
|
Masuda R, Karasaki T, Sase S, Kuwano S, Goto K. Highly Electrophilic Intermediates in the Bypass Mechanism of Glutathione Peroxidase: Synthesis, Reactivity, and Structures of Selenocysteine-Derived Cyclic Selenenyl Amides. Chemistry 2023; 29:e202302615. [PMID: 37738074 DOI: 10.1002/chem.202302615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Selenocysteine (Sec)-derived cyclic selenenyl amides, formed by the intramolecular cyclization of Sec selenenic acids (Sec-SeOHs), have been postulated to function as protective forms in the bypass mechanism of glutathione peroxidase (GPx). However, their chemical properties have not been experimentally elucidated in proteins or small-molecule systems. Recently, we reported the first nuclear magnetic resonance observation of Sec-SeOHs and their cyclization to the corresponding cyclic selenenyl amides by using selenopeptide model systems incorporated in a molecular cradle. Herein, we elucidate the structures and reactivities of Sec-derived cyclic selenenyl amides. The crystal structures and reactions toward a cysteine thiol or a 1,3-diketone-type chemical probe indicated the highly electrophilic character of cyclic selenenyl amides. This suggests that they can serve not only as protective forms to suppress the inactivation of Sec-SeOHs in GPx but also as highly electrophilic intermediates in the reactions of selenoproteins.
Collapse
Affiliation(s)
- Ryosuke Masuda
- School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Takafumi Karasaki
- School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shohei Sase
- School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Satoru Kuwano
- School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kei Goto
- School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
2
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
3
|
Masuda R, Kuwano S, Sase S, Bortoli M, Madabeni A, Orian L, Goto K. Model Study on the Catalytic Cycle of Glutathione Peroxidase Utilizing Selenocysteine-Containing Tripeptides: Elucidation of the Protective Bypass Mechanism Involving Selenocysteine Selenenic Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryosuke Masuda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Satoru Kuwano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shohei Sase
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Marco Bortoli
- Institut de Química Computacional i Catàlisi (IQCC) i Departament de Química, Facultat de Ciències, Universitat de Girona, C/M. A. Capmany 69, 17003 Girona, Spain
| | - Andrea Madabeni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Kei Goto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
4
|
Masuda R, Goto K. Modeling of selenocysteine-derived reactive intermediates utilizing a nano-sized molecular cavity as a protective cradle. Methods Enzymol 2022; 662:331-361. [PMID: 35101217 DOI: 10.1016/bs.mie.2021.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the biological functions of selenoproteins, various highly reactive species formed by oxidative modification of selenocysteine residues have been postulated to play crucial roles. Representative examples of such species are selenocysteine selenenic acids (Sec-SeOHs) and selenocysteine selenenyl iodides (Sec-SeIs), which have been widely recognized as important intermediates in the catalytic cycle of glutathione peroxidase (GPx) and iodothyronine deiodinase, respectively. However, examples of even spectroscopic observation of Sec-SeOHs and Sec-SeIs in either protein or small-molecule model systems remain elusive so far, most likely due to their notorious instability. For the synthesis of small-molecule model compounds of these reactive species, it is essential to suppress their very facile bimolecular decomposition such as self-condensation and disproportionation. Here we outline a novel method for the synthesis of stable small-molecule model compounds of the selenocysteine-derived reactive species, in which a nano-sized molecular cavity is used as a protective cradle to accommodate the reactive selenocysteine unit. Stabilization by the molecular cradle led to the successful synthesis of Sec-SeOHs, which are stable in solution at low temperatures, and a Sec-SeI, which can be isolated as crystals. The catalytic cycle of GPx was investigated using the NMR-observable Sec-SeOH models, and all the chemical processes proposed for the catalytic cycle of GPx, including the bypass process from Sec-SeOH to the corresponding cyclic selenenyl amide, were experimentally confirmed. Detailed protocols for the syntheses of selenopeptide derivatives bearing the molecular cradle and for the spectroscopic monitoring of their reactions are provided.
Collapse
Affiliation(s)
- Ryosuke Masuda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Kei Goto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
5
|
Majewski A, Przychodzeń W. Atom-economic thiophosphoroselenenylations of C–H acid esters and amides. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1971719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Witold Przychodzeń
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
6
|
Masuda R, Kimura R, Karasaki T, Sase S, Goto K. Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids. J Am Chem Soc 2021; 143:6345-6350. [PMID: 33887135 DOI: 10.1021/jacs.1c02383] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although selenocysteine selenenic acids (Sec-SeOHs) have been recognized as key intermediates in the catalytic cycle of glutathione peroxidase (GPx), examples of the direct observation of Sec-SeOH in either protein or small-molecule systems have remained elusive so far, mostly due to their instability. Here, we report the first direct spectroscopic (1H and 77Se NMR) evidence for the formation of Sec-SeOH in small-molecule selenocysteine and selenopeptide model systems with a cradle-type protective group. The catalytic cycle of GPx was investigated using NMR-observable Sec-SeOH models. All the hitherto proposed chemical processes, i.e., not only those of the canonical catalytic cycle but also those involved in the bypass mechanism, including the intramolecular cyclization of Sec-SeOH to the corresponding five-membered ring selenenyl amide, were examined in a stepwise manner.
Collapse
Affiliation(s)
- Ryosuke Masuda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Ryutaro Kimura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takafumi Karasaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shohei Sase
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Kei Goto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
7
|
Common modifications of selenocysteine in selenoproteins. Essays Biochem 2020; 64:45-53. [PMID: 31867620 DOI: 10.1042/ebc20190051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Selenocysteine (Sec), the sulfur-to-selenium substituted variant of cysteine (Cys), is the defining entity of selenoproteins. These are naturally expressed in many diverse organisms and constitute a unique class of proteins. As a result of the physicochemical characteristics of selenium when compared with sulfur, Sec is typically more reactive than Cys while participating in similar reactions, and there are also some qualitative differences in the reactivities between the two amino acids. This minireview discusses the types of modifications of Sec in selenoproteins that have thus far been experimentally validated. These modifications include direct covalent binding through the Se atom of Sec to other chalcogen atoms (S, O and Se) as present in redox active molecular motifs, derivatization of Sec via the direct covalent binding to non-chalcogen elements (Ni, Mb, N, Au and C), and the loss of Se from Sec resulting in formation of dehydroalanine. To understand the nature of these Sec modifications is crucial for an understanding of selenoprotein reactivities in biological, physiological and pathophysiological contexts.
Collapse
|
8
|
Ste Marie EJ, Wehrle RJ, Haupt DJ, Wood NB, van der Vliet A, Previs MJ, Masterson DS, Hondal RJ. Can Selenoenzymes Resist Electrophilic Modification? Evidence from Thioredoxin Reductase and a Mutant Containing α-Methylselenocysteine. Biochemistry 2020; 59:3300-3315. [PMID: 32845139 DOI: 10.1021/acs.biochem.0c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selenocysteine (Sec) is the 21st proteogenic amino acid in the genetic code. Incorporation of Sec into proteins is a complex and bioenergetically costly process that evokes the following question: "Why did nature choose selenium?" An answer that has emerged over the past decade is that Sec confers resistance to irreversible oxidative inactivation by reactive oxygen species. Here, we explore the question of whether this concept can be broadened to include resistance to reactive electrophilic species (RES) because oxygen and related compounds are merely a subset of RES. To test this hypothesis, we inactivated mammalian thioredoxin reductase (Sec-TrxR), a mutant containing α-methylselenocysteine [(αMe)Sec-TrxR], and a cysteine ortholog TrxR (Cys-TrxR) with various electrophiles, including acrolein, 4-hydroxynonenal, and curcumin. Our results show that the acrolein-inactivated Sec-TrxR and the (αMe)Sec-TrxR mutant could regain 25% and 30% activity, respectively, when incubated with 2 mM H2O2 and 5 mM imidazole. In contrast, Cys-TrxR did not regain activity under the same conditions. We posit that Sec enzymes can undergo a repair process via β-syn selenoxide elimination that ejects the electrophile, leaving the enzyme in the oxidized selenosulfide state. (αMe)Sec-TrxR was created by incorporating the non-natural amino acid (αMe)Sec into TrxR by semisynthesis and allowed for rigorous testing of our hypothesis. This Sec derivative enables higher resistance to both oxidative and electrophilic inactivation because it lacks a backbone Cα-H, which prevents loss of selenium through the formation of dehydroalanine. This is the first time this unique amino acid has been incorporated into an enzyme and is an example of state-of-the-art protein engineering.
Collapse
Affiliation(s)
- Emma J Ste Marie
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405, United States.,Department of Chemistry, Discovery Hall, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Robert J Wehrle
- School of Mathematics and Natural Sciences, Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Daniel J Haupt
- Department of Chemistry, Discovery Hall, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Neil B Wood
- Department of Molecular Physiology & Biophysics, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, Vermont 05405, United States
| | - Michael J Previs
- Department of Molecular Physiology & Biophysics, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405, United States
| | - Douglas S Masterson
- School of Mathematics and Natural Sciences, Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405, United States.,Department of Chemistry, Discovery Hall, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| |
Collapse
|
9
|
Maroney MJ, Hondal RJ. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic Biol Med 2018; 127:228-237. [PMID: 29588180 PMCID: PMC6158117 DOI: 10.1016/j.freeradbiomed.2018.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/16/2022]
Abstract
This review highlights the contributions of Jean Chaudière to the field of selenium biochemistry. Chaudière was the first to recognize that one of the main reasons that selenium in the form of selenocysteine is used in proteins is due to the fact that it strongly resists permanent oxidation. The foundations for this important concept was laid down by Al Tappel in the 1960's and even before by others. The concept of oxygen tolerance first recognized in the study of glutathione peroxidase was further advanced and refined by those studying [NiFeSe]-hydrogenases, selenosubtilisin, and thioredoxin reductase. After 200 years of selenium research, work by Marcus Conrad and coworkers studying glutathione peroxidase-4 has provided definitive evidence for Chaudière's original hypothesis (Ingold et al., 2018) [36]. While the reaction of selenium with oxygen is readily reversible, there are many other examples of this phenomenon of reversibility. Many reactions of selenium can be described as "easy in - easy out". This is due to the strong nucleophilic character of selenium to attack electrophiles, but then this reaction can be reversed due to the strong electrophilic character of selenium and the weakness of the selenium-carbon bond. Several examples of this are described.
Collapse
Affiliation(s)
- Michael J Maroney
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Life Sciences Laboratories, 240 Thatcher Road, Room N373, Amherst, MA 01003-9364, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States.
| |
Collapse
|