1
|
Permana D, Putra HE, Djaenudin D. Designed protein multimerization and polymerization for functionalization of proteins. Biotechnol Lett 2022; 44:341-365. [PMID: 35083582 PMCID: PMC8791688 DOI: 10.1007/s10529-021-03217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022]
Abstract
Abstract Multimeric and polymeric proteins are large biomacromolecules consisting of multiple protein molecules as their monomeric units, connected through covalent or non-covalent bonds. Genetic modification and post-translational modifications (PTMs) of proteins offer alternative strategies for designing and creating multimeric and polymeric proteins. Multimeric proteins are commonly prepared by genetic modification, whereas polymeric proteins are usually created through PTMs. There are two methods that can be applied to create polymeric proteins: self-assembly and crosslinking. Self-assembly offers a spontaneous reaction without a catalyst, while the crosslinking reaction offers some catalyst options, such as chemicals and enzymes. In addition, enzymes are excellent catalysts because they provide site-specificity, rapid reaction, mild reaction conditions, and activity and functionality maintenance of protein polymers. However, only a few enzymes are applicable for the preparation of protein polymers. Most of the other enzymes are effective only for protein conjugation or labeling. Here, we review novel and applicable strategies for the preparation of multimeric proteins through genetic modification and self-assembly. We then describe the formation of protein polymers through site-selective crosslinking reactions catalyzed by enzymes, crosslinking reactions of non-natural amino acids, and protein-peptide (SpyCatcher/SpyTag) interactions. Finally, we discuss the potential applications of these protein polymers. Graphical abstract ![]()
Collapse
Affiliation(s)
- Dani Permana
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,Research Unit for Clean Technology, The National Research and Innovation Agency of Republic of Indonesia, Jl. Cisitu, Bandung, 40135, Indonesia.
| | - Herlian Eriska Putra
- Research Unit for Clean Technology, The National Research and Innovation Agency of Republic of Indonesia, Jl. Cisitu, Bandung, 40135, Indonesia
| | - Djaenudin Djaenudin
- Research Unit for Clean Technology, The National Research and Innovation Agency of Republic of Indonesia, Jl. Cisitu, Bandung, 40135, Indonesia
| |
Collapse
|
2
|
Mains K, Peoples J, Fox JM. Kinetically guided, ratiometric tuning of fatty acid biosynthesis. Metab Eng 2021; 69:209-220. [PMID: 34826644 DOI: 10.1016/j.ymben.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
Cellular metabolism is a nonlinear reaction network in which dynamic shifts in enzyme concentration help regulate the flux of carbon to different products. Despite the apparent simplicity of these biochemical adjustments, their influence on metabolite biosynthesis tends to be context-dependent, difficult to predict, and challenging to exploit in metabolic engineering. This study combines a detailed kinetic model with a systematic set of in vitro and in vivo analyses to explore the use of enzyme concentration as a control parameter in fatty acid synthesis, an essential metabolic process with important applications in oleochemical production. Compositional analyses of a modeled and experimentally reconstituted fatty acid synthase (FAS) from Escherichia coli indicate that the concentration ratio of two native enzymes-a promiscuous thioesterase and a ketoacyl synthase-can tune the average length of fatty acids, an important design objective of engineered pathways. The influence of this ratio is sensitive to the concentrations of other FAS components, which can narrow or expand the range of accessible chain lengths. Inside the cell, simple changes in enzyme concentration can enhance product-specific titers by as much as 125-fold and elicit shifts in overall product profiles that rival those of thioesterase mutants. This work develops a kinetically guided approach for using ratiometric adjustments in enzyme concentration to control the product profiles of FAS systems and, broadly, provides a detailed framework for understanding how coordinated shifts in enzyme concentration can afford tight control over the outputs of nonlinear metabolic pathways.
Collapse
Affiliation(s)
- Kathryn Mains
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jackson Peoples
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
3
|
Minamihata K, Tanaka Y, Santoso P, Goto M, Kozome D, Taira T, Kamiya N. Orthogonal Enzymatic Conjugation Reactions Create Chitin Binding Domain Grafted Chitinase Polymers with Enhanced Antifungal Activity. Bioconjug Chem 2021; 32:1688-1698. [PMID: 34251809 DOI: 10.1021/acs.bioconjchem.1c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymatic reaction offers site-specific conjugation of protein units to form protein conjugates or protein polymers with intrinsic functions. Herein, we report horseradish peroxidase (HRP)- and microbial transglutaminase (MTG)-catalyzed orthogonal conjugation reactions to create antifungal protein polymers composed of Pteris ryukyuensis chitinase-A (ChiA) and its two domains, catalytic domain, CatD, and chitin-binding domain, LysM2. We engineered the ChiA and CatD by introducing a peptide tag containing tyrosine (Y-tag) at N-termini and a peptide tag containing lysine and tyrosine (KY-tag) at C-termini to construct Y-ChiA-KY and Y-CatD-KY. Also, LysM2 with Y-tag and KY-tag (Y-LysM2-KY) or with a glutamine-containing peptide tag (Q-tag) (LysM2-Q) were constructed. The proteins with Y-tag and KY-tag were efficiently polymerized by HRP reaction through the formation of dityrosine bonds at the tyrosine residues in the peptide tags. The Y-CatD-KY polymer was further treated by MTG to orthogonally graft LysM2-Q to the KY-tag via isopeptide formation between the side chains of the glutamine and lysine residues in the peptide tags to form LysM2-grafted CatD polymer. The LysM2-grafted CatD polymer exhibited significantly higher antifungal activity than the homopolymer of Y-ChiA-KY and the random copolymer of Y-CatD-KY and Y-LysM2-KY, demonstrating that the structural differences of artificial chitinase polymers have a significant impact on the antifungal activity. This strategy of polymerization and grafting reaction of protein can contribute to the further research and development of functional protein polymers for specific applications in various fields in biotechnology.
Collapse
Affiliation(s)
- Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pugoh Santoso
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Dan Kozome
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Song H, Burton AJ, Shirran SL, Fahrig-Kamarauskaitė J, Kaspar H, Muir TW, Künzler M, Naismith JH. Engineering of a Peptide α-N-Methyltransferase to Methylate Non-Proteinogenic Amino Acids. Angew Chem Int Ed Engl 2021; 60:14319-14323. [PMID: 33856715 PMCID: PMC8251615 DOI: 10.1002/anie.202100818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Introduction of α‐N‐methylated non‐proteinogenic amino acids into peptides can improve their biological activities, membrane permeability and proteolytic stability. This is commonly achieved, in nature and in the lab, by assembling pre‐methylated amino acids. The more appealing route of methylating amide bonds is challenging. Biology has evolved an α‐N‐automethylating enzyme, OphMA, which acts on the amide bonds of peptides fused to its C‐terminus. Due to the ribosomal biosynthesis of its substrate, the activity of this enzyme towards peptides with non‐proteinogenic amino acids has not been addressed. An engineered OphMA, intein‐mediated protein ligation and solid‐phase peptide synthesis have allowed us to demonstrate the methylation of amide bonds in the context of non‐natural amides. This approach may have application in the biotechnological production of therapeutic peptides.
Collapse
Affiliation(s)
- Haigang Song
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.,The Research Complex at Harwell, Harwell Campus, Oxford, OX11 0FA, UK.,The Rosalind Franklin Institute, Harwell Campus, Oxford, OX11 0FA, UK
| | - Antony J Burton
- Department of Chemistry, Frick Chemistry Laboratory, Princeton University, Princeton, NJ, USA
| | - Sally L Shirran
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife, KY16 9ST, UK
| | - Jūratė Fahrig-Kamarauskaitė
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Hannelore Kaspar
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Tom W Muir
- Department of Chemistry, Frick Chemistry Laboratory, Princeton University, Princeton, NJ, USA
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - James H Naismith
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.,The Research Complex at Harwell, Harwell Campus, Oxford, OX11 0FA, UK.,The Rosalind Franklin Institute, Harwell Campus, Oxford, OX11 0FA, UK
| |
Collapse
|
5
|
Song H, Burton AJ, Shirran SL, Fahrig‐Kamarauskaitė J, Kaspar H, Muir TW, Künzler M, Naismith JH. Engineering of a Peptide α-N-Methyltransferase to Methylate Non-Proteinogenic Amino Acids. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:14440-14444. [PMID: 38505374 PMCID: PMC10947093 DOI: 10.1002/ange.202100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Introduction of α-N-methylated non-proteinogenic amino acids into peptides can improve their biological activities, membrane permeability and proteolytic stability. This is commonly achieved, in nature and in the lab, by assembling pre-methylated amino acids. The more appealing route of methylating amide bonds is challenging. Biology has evolved an α-N-automethylating enzyme, OphMA, which acts on the amide bonds of peptides fused to its C-terminus. Due to the ribosomal biosynthesis of its substrate, the activity of this enzyme towards peptides with non-proteinogenic amino acids has not been addressed. An engineered OphMA, intein-mediated protein ligation and solid-phase peptide synthesis have allowed us to demonstrate the methylation of amide bonds in the context of non-natural amides. This approach may have application in the biotechnological production of therapeutic peptides.
Collapse
Affiliation(s)
- Haigang Song
- Division of Structural BiologyWellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
- The Research Complex at HarwellHarwell CampusOxfordOX11 0FAUK
- The Rosalind Franklin InstituteHarwell CampusOxfordOX11 0FAUK
| | - Antony J. Burton
- Department of ChemistryFrick Chemistry LaboratoryPrinceton UniversityPrincetonNJUSA
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, North HaughUniversity of St. AndrewsFifeKY16 9STUK
| | - Jūratė Fahrig‐Kamarauskaitė
- Department of BiologyInstitute of MicrobiologyEidgenössische Technische Hochschule (ETH) ZürichZürichSwitzerland
| | - Hannelore Kaspar
- Department of BiologyInstitute of MicrobiologyEidgenössische Technische Hochschule (ETH) ZürichZürichSwitzerland
| | - Tom W. Muir
- Department of ChemistryFrick Chemistry LaboratoryPrinceton UniversityPrincetonNJUSA
| | - Markus Künzler
- Department of BiologyInstitute of MicrobiologyEidgenössische Technische Hochschule (ETH) ZürichZürichSwitzerland
| | - James H. Naismith
- Division of Structural BiologyWellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
- The Research Complex at HarwellHarwell CampusOxfordOX11 0FAUK
- The Rosalind Franklin InstituteHarwell CampusOxfordOX11 0FAUK
| |
Collapse
|
6
|
Permana D, Minamihata K, Goto M, Kamiya N. Strategies for Making Multimeric and Polymeric Bifunctional Protein Conjugates and Their Applications as Bioanalytical Tools. ANAL SCI 2021; 37:425-437. [PMID: 33455962 DOI: 10.2116/analsci.20scr07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzymes play a central role in the detection of target molecules in biotechnological fields. Most probes used in detection are bifunctional proteins comprising enzymes and binding proteins conjugated by chemical reactions. To create a highly sensitive detection probe, it is essential to increase the enzyme-to-binding protein ratio in the probe. However, if the chemical reactions required to prepare the probe are insufficiently site-specific, the detection probe may lose functionality. Genetic modifications and enzyme-mediated post-translational modifications (PTMs) can ensure the site-specific conjugation of proteins. They are therefore promising strategies for the production of detection probes with high enzyme contents, i.e., polymeric bifunctional proteins. Herein, we review recent advances in the preparation of bifunctional protein conjugates and polymeric bifunctional protein conjugates for detection. We have summarized research on genetically fused proteins and enzymatically prepared polymeric bifunctional proteins, and will discuss the potential use of protein polymers in various detection applications.
Collapse
Affiliation(s)
- Dani Permana
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Kampus LIPI Bandung
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| |
Collapse
|
7
|
Nasir A, Ashok S, Shim JY, Park S, Yoo TH. Recent Progress in the Understanding and Engineering of Coenzyme B 12-Dependent Glycerol Dehydratase. Front Bioeng Biotechnol 2020; 8:500867. [PMID: 33224925 PMCID: PMC7674605 DOI: 10.3389/fbioe.2020.500867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Coenzyme B12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal (3-HPA), which can be converted biologically to versatile platform chemicals such as 1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for biofuels, developing biological processes based on glycerol, which is a byproduct of biodiesel production, has attracted considerable attention recently. In this review, we will provide updates on the current understanding of the catalytic mechanism and structure of coenzyme B12-dependent GDHt, and then summarize the results of engineering attempts, with perspectives on future directions in its engineering.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Jeung Yeop Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
8
|
A kinetic rationale for functional redundancy in fatty acid biosynthesis. Proc Natl Acad Sci U S A 2020; 117:23557-23564. [PMID: 32883882 DOI: 10.1073/pnas.2013924117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) of Escherichia coli and paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures-and helps explain-the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives-the total production, unsaturated fraction, and average length of fatty acids-than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.
Collapse
|