1
|
Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, van der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proc Natl Acad Sci U S A 2024; 121:e2313162121. [PMID: 38451946 PMCID: PMC10945838 DOI: 10.1073/pnas.2313162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/30/2023] [Indexed: 03/09/2024] Open
Abstract
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Liru Feng
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Kevin Klein
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
- University College London, Division of Physics and Astronomy, LondonWC1E 6BT, United Kingdom
| | - Guido Giannetti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Yeji Choi
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Federico Caporaletti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Dimitra Micha
- Amsterdam University Medical Centers, Human Genetics Department, Vrije Universiteit, Amsterdam1007 MB, The Netherlands
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Antoine Deblais
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Andela Šarić
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
| | - Ioana M. Ilie
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| |
Collapse
|
2
|
Krauss SW, Eckardt M, Will J, Spiecker E, Siegel R, Dulle M, Schweins R, Pauw B, Senker J, Zobel M. The H-D-isotope effect of heavy water affecting ligand-mediated nanoparticle formation in SANS and NMR experiments. NANOSCALE 2023; 15:16413-16424. [PMID: 37791518 DOI: 10.1039/d3nr02419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
An isotopic effect of normal (H2O) vs. heavy water (D2O) is well known to fundamentally affect the structure and chemical properties of proteins, for instance. Here, we correlate the results from small angle X-ray and neutron scattering (SAXS, SANS) with high-resolution scanning transmission electron microscopy to track the evolution of CdS nanoparticle size and crystallinity from aqueous solution in the presence of the organic ligand ethylenediaminetetraacetate (EDTA) at room temperature in both H2O and D2O. We provide evidence via SANS experiments that exchanging H2O with D2O impacts nanoparticle formation by changing the equilibria and dynamics of EDTA clusters in solution as investigated by nuclear magnetic resonance analysis. The colloidal stability of the CdS nanoparticles, covered by a layer of [Cd(EDTA)]2- complexes, is significantly reduced in D2O despite the strong stabilizing effect of EDTA in suspensions of normal water. Hence, conclusions about nanoparticle formation mechanisms from D2O solutions reveal limited transferability to reactions in normal water due to isotopic effects, which thus need to be discussed for contrast match experiments.
Collapse
Affiliation(s)
- Sebastian W Krauss
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Mirco Eckardt
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Johannes Will
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Renée Siegel
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Martin Dulle
- JCNS-1/IBI-8: Neutron Scattering and Biological Matter, Forschungszentrum Jülich Gmbh, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Ralf Schweins
- Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Brian Pauw
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Mirijam Zobel
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066 Aachen, Germany.
| |
Collapse
|
3
|
Giubertoni G, Bonn M, Woutersen S. D 2O as an Imperfect Replacement for H 2O: Problem or Opportunity for Protein Research? J Phys Chem B 2023; 127:8086-8094. [PMID: 37722111 PMCID: PMC10544019 DOI: 10.1021/acs.jpcb.3c04385] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Indexed: 09/20/2023]
Abstract
D2O is commonly used as a solvent instead of H2O in spectroscopic studies of proteins, in particular, in infrared and nuclear-magnetic-resonance spectroscopy. D2O is chemically equivalent to H2O, and the differences, particularly in hydrogen-bond strength, are often ignored. However, replacing solvent water with D2O can affect not only the kinetics but also the structure and stability of biomolecules. Recent experiments have shown that even the mesoscopic structures and the elastic properties of biomolecular assemblies, such as amyloids and protein networks, can be very different in D2O and H2O. We discuss these findings, which probably are just the tip of the iceberg, and which seem to call for obtaining a better understanding of the H2O/D2O-isotope effect on water-water and water-protein interactions. Such improved understanding may change the differences between H2O and D2O as biomolecular solvents from an elephant in the room to an opportunity for protein research.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Haidar Y, Konermann L. Effects of Hydrogen/Deuterium Exchange on Protein Stability in Solution and in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37314114 DOI: 10.1021/jasms.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry (MS)-based techniques are widely used for probing protein structure and dynamics in solution. H/D exchange (HDX)-MS is one of the most common approaches in this context. HDX is often considered to be a "benign" labeling method, in that it does not perturb protein behavior in solution. However, several studies have reported that D2O pushes unfolding equilibria toward the native state. The origin, and even the existence of this protein stabilization remain controversial. Here we conducted thermal unfolding assays in solution to confirm that deuterated proteins in D2O are more stable, with 2-4 K higher melting temperatures than unlabeled proteins in H2O. Previous studies tentatively attributed this phenomenon to strengthened H-bonds after deuteration, an effect that may arise from the lower zero-point vibrational energy of the deuterated species. Specifically, it was proposed that strengthened water-water bonds (W···W) in D2O lower the solubility of nonpolar side chains. The current work takes a broader view by noting that protein stability in solution also depends on water-protein (W···P) and protein-protein (P···P) H-bonds. To help unravel these contributions, we performed collision-induced unfolding (CIU) experiments on gaseous proteins generated by native electrospray ionization. CIU profiles of deuterated and unlabeled proteins were indistinguishable, implying that P···P contacts are insensitive to deuteration. Thus, protein stabilization in D2O is attributable to solvent effects, rather than alterations of intraprotein H-bonds. Strengthening of W···W contacts represents one possible explanation, but the stabilizing effect of D2O can also originate from weakened W···P bonds. Future work will be required to elucidate which of these two scenarios is correct, or if both contribute to protein stabilization in D2O. In any case, the often-repeated adage that "D-bonds are more stable than H-bonds" does not apply to intramolecular contacts in native proteins.
Collapse
Affiliation(s)
- Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Tugarinov V, Baber JL, Clore GM. A methyl-TROSY based 13C relaxation dispersion NMR experiment for studies of chemical exchange in proteins. JOURNAL OF BIOMOLECULAR NMR 2023:10.1007/s10858-023-00413-8. [PMID: 37095392 DOI: 10.1007/s10858-023-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
A methyl Transverse Relaxation Optimized Spectroscopy (methyl-TROSY) based, multiple quantum (MQ) 13C Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiment is described. The experiment is derived from the previously developed MQ 13C-1H CPMG scheme (Korzhnev in J Am Chem Soc 126: 3964-73, 2004) supplemented with a CPMG train of refocusing 1H pulses applied with constant frequency and synchronized with the 13C CPMG pulse train. The optimal 1H 'decoupling' scheme that minimizes the amount of fast-relaxing methyl MQ magnetization present during CPMG intervals, makes use of an XY-4 phase cycling of the refocusing composite 1H pulses. For small-to-medium sized proteins, the MQ 13C CPMG experiment has the advantage over its single quantum (SQ) 13C counterpart of significantly reducing intrinsic, exchange-free relaxation rates of methyl coherences. For high molecular weight proteins, the MQ 13C CPMG experiment eliminates complications in the interpretation of MQ 13C-1H CPMG relaxation dispersion profiles arising from contributions to exchange from differences in methyl 1H chemical shifts between ground and excited states. The MQ 13C CPMG experiment is tested on two protein systems: (1) a triple mutant of the Fyn SH3 domain that interconverts slowly on the chemical shift time scale between the major folded state and an excited state folding intermediate; and (2) the 82-kDa enzyme Malate Synthase G (MSG), where chemical exchange at individual Ile δ1 methyl positions occurs on a much faster time-scale.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - James L Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
6
|
Thole JF, Waudby CA, Pielak GJ. Disordered proteins mitigate the temperature dependence of site-specific binding free energies. J Biol Chem 2023; 299:102984. [PMID: 36739945 PMCID: PMC10027511 DOI: 10.1016/j.jbc.2023.102984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Biophysical characterization of protein-protein interactions involving disordered proteins is challenging. A common simplification is to measure the thermodynamics and kinetics of disordered site binding using peptides containing only the minimum residues necessary. We should not assume, however, that these few residues tell the whole story. Son of sevenless, a multidomain signaling protein from Drosophila melanogaster, is critical to the mitogen-activated protein kinase pathway, passing an external signal to Ras, which leads to cellular responses. The disordered 55 kDa C-terminal domain of Son of sevenless is an autoinhibitor that blocks guanidine exchange factor activity. Activation requires another protein, Downstream of receptor kinase (Drk), which contains two Src homology 3 domains. Here, we utilized NMR spectroscopy and isothermal titration calorimetry to quantify the thermodynamics and kinetics of the N-terminal Src homology 3 domain binding to the strongest sites incorporated into the flanking disordered sequences. Comparing these results to those for isolated peptides provides information about how the larger domain affects binding. The affinities of sites on the disordered domain are like those of the peptides at low temperatures but less sensitive to temperature. Our results, combined with observations showing that intrinsically disordered proteins become more compact with increasing temperature, suggest a mechanism for this effect.
Collapse
Affiliation(s)
- Joseph F Thole
- Department of Chemistry, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Molecular and Cellular Biophysics Program, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Gary J Pielak
- Department of Chemistry, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Molecular and Cellular Biophysics Program, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry & Biophysics, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Cancer Center, UNC-Chapel Hill, Chapel Hill, North Carolina, USA; Integrative Program for Biological and Genome Sciences, UNC - Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
7
|
Masquelier E, Liang SP, Sepunaru L, Morse DE, Gordon MJ. Reversible electrochemical triggering and optical interrogation of polylysine α-helix formation. Bioelectrochemistry 2022; 144:108007. [PMID: 34871847 DOI: 10.1016/j.bioelechem.2021.108007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Reversible electrochemical triggering of the random coil to α-helix conformational transition of polylysine (Lys10, Lys20, Lys50) was accomplished at a Pt electrode at potentials < |1| V vs. Ag/AgCl. Direct electroreduction of the N-terminus vs ε-amino groups in Lys sidechains, as well as hydronium reduction and electrolysis, could be easily distinguished and deconvolved using differential pulse voltammetry. Electrochemistry was coupled with in situ UV absorbance and circular dichroism spectroscopies to dynamically follow the evolution of α-helix formation at different potentials. Isotope experiments in H2O vs. D2O unequivocally confirm that direct electroreduction of ε-NH3+/ND3+ groups in Lys sidechains, rather than electrochemically generated pH gradient-induced deprotonation, leads to subsequent α-helix formation. The site-selective electrochemistry and optical methodologies presented herein can be generalized and extended to interrogate other protonation-sensitive biomolecular systems, and potentially provide access to early intermediates and control over the dynamic structural evolution of peptides and proteins.
Collapse
Affiliation(s)
- Eloise Masquelier
- Materials Department, University of California, Santa Barbara, CA, United States
| | - Sheng-Ping Liang
- Dept. Of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Lior Sepunaru
- Dept. Of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Daniel E Morse
- Dept. Of Molecular, Cellular and Development Biology, University of California, Santa Barbara, CA, United States; Institue for Collaborative Biotechnologies, University of California, Santa Barbara, CA, United States
| | - Michael J Gordon
- Dept. Of Chemical Engineering, University of California, Santa Barbara, CA, United States; Institue for Collaborative Biotechnologies, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
8
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Chun SY, Son MK, Park CR, Lim C, Kim HI, Kwak K, Cho M. Direct observation of protein structural transitions through entire amyloid aggregation processes in water using 2D-IR spectroscopy. Chem Sci 2022; 13:4482-4489. [PMID: 35656138 PMCID: PMC9020176 DOI: 10.1039/d1sc06047c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/18/2022] [Indexed: 12/02/2022] Open
Abstract
Amyloid proteins that undergo self-assembly to form insoluble fibrillar aggregates have attracted much attention due to their role in biological and pathological significance in amyloidosis. This study aims to understand the amyloid aggregation dynamics of insulin (INS) in H2O using two-dimensional infrared (2D-IR) spectroscopy. Conventional IR studies have been performed in D2O to avoid spectral congestion despite distinct H–D isotope effects. We observed a slowdown of the INS fibrillation process in D2O compared to that in H2O. The 2D-IR results reveal that different quaternary structures of INS at the onset of the nucleation phase caused the distinct fibrillation pathways of INS in H2O and D2O. A few different biophysical analysis, including solution-phase small-angle X-ray scattering combined with molecular dynamics simulations and other spectroscopic techniques, support our 2D-IR investigation results, providing insight into mechanistic details of distinct structural transition dynamics of INS in water. We found the delayed structural transition in D2O is due to the kinetic isotope effect at an early stage of fibrillation of INS in D2O, i.e., enhanced dimer formation of INS in D2O. Our 2D-IR and biophysical analysis provide insight into mechanistic details of structural transition dynamics of INS in water. This study demonstrates an innovative 2D-IR approach for studying protein dynamics in H2O, which will open the way for observing protein dynamics under biological conditions without IR spectroscopic interference by water vibrations. This study aims to understand the structural transition dynamics of INS during amyloid aggregation in H2O using 2D-IR spectroscopy. The results show that distinct fibrillations in D2O and H2O originated from different quaternary structures of INS.![]()
Collapse
Affiliation(s)
- So Yeon Chun
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) Seoul 02841 Republic of Korea
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
- Center for Proteogenome Research, Korea University Seoul 02841 Republic of Korea
- Single Cell Analysis Laboratory, Korea University Seoul 02841 Republic of Korea
| | - Chae Ri Park
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
- Center for Proteogenome Research, Korea University Seoul 02841 Republic of Korea
- Single Cell Analysis Laboratory, Korea University Seoul 02841 Republic of Korea
| | - Chaiho Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) Seoul 02841 Republic of Korea
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
- Center for Proteogenome Research, Korea University Seoul 02841 Republic of Korea
- Single Cell Analysis Laboratory, Korea University Seoul 02841 Republic of Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) Seoul 02841 Republic of Korea
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) Seoul 02841 Republic of Korea
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
10
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
11
|
Politou AS, Pastore A, Temussi PA. An "Onion-like" Model of Protein Unfolding: Collective versus Site Specific Approaches. Chemphyschem 2021; 23:e202100520. [PMID: 34549492 DOI: 10.1002/cphc.202100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Approximating protein unfolding by an all-or-none cooperative event is a convenient assumption that can provide precious global information on protein stability. It is however quickly emerging that the scenario is far more complex and that global denaturation curves often hide a rich heterogeneity of states that are largely probe dependent. In this review, we revisit the importance of gaining site-specific information on the unfolding process. We focus on nuclear magnetic resonance, as this is the main technique able to provide site-specific information. We review historical and most modern approaches that have allowed an appreciable advancement of the field of protein folding. We also demonstrate how unfolding is a reporter dependent event, suggesting the outmost importance of selecting the reporter carefully.
Collapse
Affiliation(s)
- Anastasia S Politou
- Faculty of Medicine, University of Ioannina.,Institute of Molecular Biology and Biotechnology-FORTH, Ioannina, Greece
| | - Annalisa Pastore
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| |
Collapse
|
12
|
Thole JF, Fadero TC, Bonin JP, Stadmiller SS, Giudice JA, Pielak GJ. Danio rerio Oocytes for Eukaryotic In-Cell NMR. Biochemistry 2021; 60:451-459. [PMID: 33534998 DOI: 10.1021/acs.biochem.0c00922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding how the crowded and complex cellular milieu affects protein stability and dynamics has only recently become possible by using techniques such as in-cell nuclear magnetic resonance. However, the combination of stabilizing and destabilizing interactions makes simple predictions difficult. Here we show the potential of Danio rerio oocytes as an in-cell nuclear magnetic resonance model that can be widely used to measure protein stability and dynamics. We demonstrate that in eukaryotic oocytes, which are 3-6-fold less crowded than other cell types, attractive chemical interactions still dominate effects on protein stability and slow tumbling times, compared to the effects of dilute buffer.
Collapse
Affiliation(s)
- Joseph F Thole
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tanner C Fadero
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey P Bonin
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha S Stadmiller
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan A Giudice
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary J Pielak
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Payne MK, Applegate LC, Singh P, Jayasinghe AS, Crull GB, Grafton AB, Cheatum CM, Forbes TZ. Selectivity for water isotopologues within metal organic nanotubes. RSC Adv 2021; 11:16706-16710. [PMID: 35479164 PMCID: PMC9032102 DOI: 10.1039/d1ra00602a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
Through a combination of many analytical approaches, we show that a metal organic nanotube (UMON) displays selectivity for H2O over all types of heavy water (D2O, HDO, HTO). Water adsorption experiments combined with vibrational and radiochemical analyses reveal significant differences in uptake and suggest that surface adsorption processes may be a key driver in water uptake for this material. Water adsorption experiments combined with vibrational and radiochemical analyses reveal significant differences in uptake of H2O over D2O, HDO, and HTO within metal organic nanotubes.![]()
Collapse
|
14
|
Danchin A. Isobiology: A Variational Principle for Exploring Synthetic Life. Chembiochem 2020; 21:1781-1792. [DOI: 10.1002/cbic.202000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Antoine Danchin
- Stellate TherapeuticsInstitut Cochin 24 rue du Faubourg Saint-Jacques 75014 Paris France
| |
Collapse
|
15
|
Ranasinghe C, Pagano P, Sapienza PJ, Lee AL, Kohen A, Cheatum CM. Isotopic Labeling of Formate Dehydrogenase Perturbs the Protein Dynamics. J Phys Chem B 2019; 123:10403-10409. [PMID: 31696711 DOI: 10.1021/acs.jpcb.9b08426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isotope substitution of enzymes has become a means of addressing the participation of protein motions in enzyme-catalyzed reactions. The idea is that only the enzyme mass will be altered and not the electrostatics, so that the protein dynamics are essentially the same but at lower frequencies because of the mass change. In this study, we variably label all carbon atoms in formate dehydrogenase (FDH) with 13C, all nitrogen atoms with 15N, and all nonexchangeable hydrogen atoms with deuterium and investigate the impact that isotopic substitution has on the dynamics at the active site by two-dimensional infrared spectroscopy and compare with the measurements of the temperature dependence of the intrinsic kinetic isotope effects (KIEs). We show that 15N labeling of FDH has the largest effect and makes the active site more heterogeneous, whereas the addition of nonexchangeable deuterium appears to have the opposite effect of 15N on active-site dynamics, resulting in a behavior similar to that of native FDH. Nevertheless, the temperature dependence of the KIEs shows a monotonic trend with protein mass that does not correspond with the changes in dynamics. These results suggest that isotope labeling has more than just a mass effect on enzyme dynamics and may influence electrostatics in ways that complicate the interpretation of the protein isotope effect.
Collapse
Affiliation(s)
- Chethya Ranasinghe
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1727 , United States
| | - Philip Pagano
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1727 , United States
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Amnon Kohen
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1727 , United States
| | - Christopher M Cheatum
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1727 , United States
| |
Collapse
|