1
|
Cordes MHJ, Sundman AK, Fox HC, Binford GJ. Protein salvage and repurposing in evolution: Phospholipase D toxins are stabilized by a remodeled scrap of a membrane association domain. Protein Sci 2023; 32:e4701. [PMID: 37313620 PMCID: PMC10303701 DOI: 10.1002/pro.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (β/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands β7-β8 of a β-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a β-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.
Collapse
Affiliation(s)
| | | | - Holden C. Fox
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
2
|
Chakravarty D, Sreenivasan S, Swint-Kruse L, Porter LL. Identification of a covert evolutionary pathway between two protein folds. Nat Commun 2023; 14:3177. [PMID: 37264049 DOI: 10.1038/s41467-023-38519-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Although homologous protein sequences are expected to adopt similar structures, some amino acid substitutions can interconvert α-helices and β-sheets. Such fold switching may have occurred over evolutionary history, but supporting evidence has been limited by the: (1) abundance and diversity of sequenced genes, (2) quantity of experimentally determined protein structures, and (3) assumptions underlying the statistical methods used to infer homology. Here, we overcome these barriers by applying multiple statistical methods to a family of ~600,000 bacterial response regulator proteins. We find that their homologous DNA-binding subunits assume divergent structures: helix-turn-helix versus α-helix + β-sheet (winged helix). Phylogenetic analyses, ancestral sequence reconstruction, and AlphaFold2 models indicate that amino acid substitutions facilitated a switch from helix-turn-helix into winged helix. This structural transformation likely expanded DNA-binding specificity. Our approach uncovers an evolutionary pathway between two protein folds and provides a methodology to identify secondary structure switching in other protein families.
Collapse
Affiliation(s)
- Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Shwetha Sreenivasan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Sykes J, Holland BR, Charleston MA. A review of visualisations of protein fold networks and their relationship with sequence and function. Biol Rev Camb Philos Soc 2023; 98:243-262. [PMID: 36210328 PMCID: PMC10092621 DOI: 10.1111/brv.12905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Proteins form arguably the most significant link between genotype and phenotype. Understanding the relationship between protein sequence and structure, and applying this knowledge to predict function, is difficult. One way to investigate these relationships is by considering the space of protein folds and how one might move from fold to fold through similarity, or potential evolutionary relationships. The many individual characterisations of fold space presented in the literature can tell us a lot about how well the current Protein Data Bank represents protein fold space, how convergence and divergence may affect protein evolution, how proteins affect the whole of which they are part, and how proteins themselves function. A synthesis of these different approaches and viewpoints seems the most likely way to further our knowledge of protein structure evolution and thus, facilitate improved protein structure design and prediction.
Collapse
Affiliation(s)
- Janan Sykes
- School of Natural Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001, Australia
| | - Barbara R Holland
- School of Natural Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001, Australia
| | - Michael A Charleston
- School of Natural Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
4
|
Miton CM, Tokuriki N. Insertions and Deletions (Indels): A Missing Piece of the Protein Engineering Jigsaw. Biochemistry 2023; 62:148-157. [PMID: 35830609 DOI: 10.1021/acs.biochem.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the years, protein engineers have studied nature and borrowed its tricks to accelerate protein evolution in the test tube. While there have been considerable advances, our ability to generate new proteins in the laboratory is seemingly limited. One explanation for these shortcomings may be that insertions and deletions (indels), which frequently arise in nature, are largely overlooked during protein engineering campaigns. The profound effect of indels on protein structures, by way of drastic backbone alterations, could be perceived as "saltation" events that bring about significant phenotypic changes in a single mutational step. Should we leverage these effects to accelerate protein engineering and gain access to unexplored regions of adaptive landscapes? In this Perspective, we describe the role played by indels in the functional diversification of proteins in nature and discuss their untapped potential for protein engineering, despite their often-destabilizing nature. We hope to spark a renewed interest in indels, emphasizing that their wider study and use may prove insightful and shape the future of protein engineering by unlocking unique functional changes that substitutions alone could never achieve.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| |
Collapse
|
5
|
Kim AK, Looger LL, Porter LL. A high-throughput predictive method for sequence-similar fold switchers. Biopolymers 2021; 112:e23416. [PMID: 33462801 PMCID: PMC8404102 DOI: 10.1002/bip.23416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/02/2022]
Abstract
Although most experimentally characterized proteins with similar sequences assume the same folds and perform similar functions, an increasing number of exceptions is emerging. One class of exceptions comprises sequence-similar fold switchers, whose secondary structures shift from α-helix <-> β-sheet through a small number of mutations, a sequence insertion, or a deletion. Predictive methods for identifying sequence-similar fold switchers are desirable because some are associated with disease and/or can perform different functions in cells. Here, we use homology-based secondary structure predictions to identify sequence-similar fold switchers from their amino acid sequences alone. To do this, we predicted the secondary structures of sequence-similar fold switchers using three different homology-based secondary structure predictors: PSIPRED, JPred4, and SPIDER3. We found that α-helix <-> β-strand prediction discrepancies from JPred4 discriminated between the different conformations of sequence-similar fold switchers with high statistical significance (P < 1.8*10-19 ). Thus, we used these discrepancies as a classifier and found that they can often robustly discriminate between sequence-similar fold switchers and sequence-similar proteins that maintain the same folds (Matthews Correlation Coefficient of 0.82). We found that JPred4 is a more robust predictor of sequence-similar fold switchers because of (a) the curated sequence database it uses to produce multiple sequence alignments and (b) its use of sequence profiles based on Hidden Markov Models. Our results indicate that inconsistencies between JPred4 secondary structure predictions can be used to identify some sequence-similar fold switchers from their sequences alone. Thus, the negative information from inconsistent secondary structure predictions can potentially be leveraged to identify sequence-similar fold switchers from the broad base of genomic sequences.
Collapse
Affiliation(s)
- Allen K. Kim
- National Library of MedicineNational Institutes of HealthBethesdaMarylandUSA
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Loren L. Looger
- Howard Hughes Medical InstituteJanelia Research CampusAshburnVirginiaUSA
| | - Lauren L. Porter
- National Library of MedicineNational Institutes of HealthBethesdaMarylandUSA
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Das M, Chen N, LiWang A, Wang LP. Identification and characterization of metamorphic proteins: Current and future perspectives. Biopolymers 2021; 112:e23473. [PMID: 34528703 DOI: 10.1002/bip.23473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
Proteins that can reversibly alternate between distinctly different folds under native conditions are described as being metamorphic. The "metamorphome" is the collection of all metamorphic proteins in the proteome, but it remains unknown the extent to which the proteome is populated by this class of proteins. We propose that uncovering the metamorphome will require a synergy of computational screening of protein sequences to identify potential metamorphic behavior and validation through experimental techniques. This perspective discusses computational and experimental approaches that are currently used to predict and characterize metamorphic proteins as well as the need for developing improved methodologies. Since metamorphic proteins act as molecular switches, understanding their properties and behavior could lead to novel applications of these proteins as sensors in biological or environmental contexts.
Collapse
Affiliation(s)
- Madhurima Das
- School of Natural Sciences, University of California, Merced, California, USA
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, California, USA
| | - Andy LiWang
- School of Natural Sciences, University of California, Merced, California, USA.,Department of Chemistry and Biochemistry, University of California, Merced, California, USA.,Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA.,Health Sciences Research Institute, University of California, Merced, California, USA.,Center for Circadian Biology, University of California, San Diego, California, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
7
|
Tizei PAG, Harris E, Withanage S, Renders M, Pinheiro VB. A novel framework for engineering protein loops exploring length and compositional variation. Sci Rep 2021; 11:9134. [PMID: 33911147 PMCID: PMC8080606 DOI: 10.1038/s41598-021-88708-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
Insertions and deletions (indels) are known to affect function, biophysical properties and substrate specificity of enzymes, and they play a central role in evolution. Despite such clear significance, this class of mutation remains an underexploited tool in protein engineering with few available platforms capable of systematically generating and analysing libraries of varying sequence composition and length. We present a novel DNA assembly platform (InDel assembly), based on cycles of endonuclease restriction digestion and ligation of standardised dsDNA building blocks, that can generate libraries exploring both composition and sequence length variation. In addition, we developed a framework to analyse the output of selection from InDel-generated libraries, combining next generation sequencing and alignment-free strategies for sequence analysis. We demonstrate the approach by engineering the well-characterized TEM-1 β-lactamase Ω-loop, involved in substrate specificity, identifying multiple novel extended spectrum β-lactamases with loops of modified length and composition-areas of the sequence space not previously explored. Together, the InDel assembly and analysis platforms provide an efficient route to engineer protein loops or linkers where sequence length and composition are both essential functional parameters.
Collapse
Affiliation(s)
- Pedro A. G. Tizei
- grid.83440.3b0000000121901201Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Emma Harris
- grid.4464.20000 0001 2161 2573Department of Biological Sciences, University of London, Malet Street, Birkbeck, WC1E 7HX UK
| | - Shamal Withanage
- grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Marleen Renders
- grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Vitor B. Pinheiro
- grid.83440.3b0000000121901201Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK ,grid.4464.20000 0001 2161 2573Department of Biological Sciences, University of London, Malet Street, Birkbeck, WC1E 7HX UK ,grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Dishman AF, Tyler RC, Fox JC, Kleist AB, Prehoda KE, Babu MM, Peterson FC, Volkman BF. Evolution of fold switching in a metamorphic protein. Science 2021; 371:86-90. [PMID: 33384377 PMCID: PMC8017559 DOI: 10.1126/science.abd8700] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Metamorphic proteins switch between different folds, defying the protein folding paradigm. It is unclear how fold switching arises during evolution. With ancestral reconstruction and nuclear magnetic resonance, we studied the evolution of the metamorphic human protein XCL1, which has two distinct folds with different functions, making it an unusual member of the chemokine family, whose members generally adopt one conserved fold. XCL1 evolved from an ancestor with the chemokine fold. Evolution of a dimer interface, changes in structural constraints and molecular strain, and alteration of intramolecular protein contacts drove the evolution of metamorphosis. Then, XCL1 likely evolved to preferentially populate the noncanonical fold before reaching its modern-day near-equal population of folds. These discoveries illuminate how one sequence has evolved to encode multiple structures, revealing principles for protein design and engineering.
Collapse
Affiliation(s)
- Acacia F Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert C Tyler
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jamie C Fox
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kenneth E Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Kim AK, Porter LL. Functional and Regulatory Roles of Fold-Switching Proteins. Structure 2020; 29:6-14. [PMID: 33176159 DOI: 10.1016/j.str.2020.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Fold-switching proteins respond to cellular stimuli by remodeling their secondary structures and changing their functions. Whereas several previous reviews have focused on various structural, physical-chemical, and evolutionary aspects of this newly emerging class of proteins, this minireview focuses on how fold switching modulates protein function and regulates biological processes. It first compares and contrasts fold switchers with other known types of proteins. Second, it presents examples of how various proteins can change their functions through fold switching. Third, it demonstrates that fold switchers can regulate biological processes by discussing two proteins, RfaH and KaiB, whose dramatic secondary structure remodeling events directly affect gene expression and a circadian clock, respectively. Finally, this minireview discusses how the field of protein fold switching might advance.
Collapse
Affiliation(s)
- Allen K Kim
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren L Porter
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|