1
|
Seo D, Brito Oliveira S, Rex EA, Ye X, Rice LM, da Fonseca FG, Gammon DB. Poxvirus A51R proteins regulate microtubule stability and antagonize a cell-intrinsic antiviral response. Cell Rep 2024; 43:113882. [PMID: 38457341 PMCID: PMC11023057 DOI: 10.1016/j.celrep.2024.113882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.
Collapse
Affiliation(s)
- Dahee Seo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabrynna Brito Oliveira
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Emily A Rex
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuecheng Ye
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke M Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Abbaali I, Truong D, Day SD, Mushayeed F, Ganesh B, Haro-Ramirez N, Isles J, Nag H, Pham C, Shah P, Tomar I, Manel-Romero C, Morrissette NS. The tubulin database: Linking mutations, modifications, ligands and local interactions. PLoS One 2023; 18:e0295279. [PMID: 38064432 PMCID: PMC10707541 DOI: 10.1371/journal.pone.0295279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Microtubules are polymeric filaments, constructed of α-β tubulin heterodimers that underlie critical subcellular structures in eukaryotic organisms. Four homologous proteins (γ-, δ-, ε- and ζ-tubulin) additionally contribute to specialized microtubule functions. Although there is an immense volume of publicly available data pertaining to tubulins, it is difficult to assimilate all potentially relevant information across diverse organisms, isotypes, and categories of data. We previously assembled an extensive web-based catalogue of published missense mutations to tubulins with >1,500 entries that each document a specific substitution to a discrete tubulin, the species where the mutation was described and the associated phenotype with hyperlinks to the amino acid sequence and citation(s) for research. This report describes a significant update and expansion of our online resource (TubulinDB.bio.uci.edu) to nearly 18,000 entries. It now encompasses a cross-referenced catalog of post-translational modifications (PTMs) to tubulin drawn from public datasets, primary literature, and predictive algorithms. In addition, tubulin protein structures were used to define local interactions with bound ligands (GTP, GDP and diverse microtubule-targeting agents) and amino acids at the intradimer interface, within the microtubule lattice and with associated proteins. To effectively cross-reference these datasets, we established a universal tubulin numbering system to map entries into a common framework that accommodates specific insertions and deletions to tubulins. Indexing and cross-referencing permitted us to discern previously unappreciated patterns. We describe previously unlinked observations of loss of PTM sites in the context of cancer cells and tubulinopathies. Similarly, we expanded the set of clinical substitutions that may compromise MAP or microtubule-motor interactions by collecting tubulin missense mutations that alter amino acids at the interface with dynein and doublecortin. By expanding the database as a curated resource, we hope to relate model organism data to clinical findings of pathogenic tubulin variants. Ultimately, we aim to aid researchers in hypothesis generation and design of studies to dissect tubulin function.
Collapse
Affiliation(s)
- Izra Abbaali
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Danny Truong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Shania Deon Day
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Faliha Mushayeed
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Bhargavi Ganesh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Nancy Haro-Ramirez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Juliet Isles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Hindol Nag
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Catherine Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Priya Shah
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Ishaan Tomar
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Carolina Manel-Romero
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Naomi S. Morrissette
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| |
Collapse
|
3
|
Lawrence EJ, Chatterjee S, Zanic M. CLASPs stabilize the pre-catastrophe intermediate state between microtubule growth and shrinkage. J Cell Biol 2023; 222:e202107027. [PMID: 37184584 PMCID: PMC10195879 DOI: 10.1083/jcb.202107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/03/2022] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Cytoplasmic linker-associated proteins (CLASPs) regulate microtubules in fundamental cellular processes. CLASPs stabilize dynamic microtubules by suppressing microtubule catastrophe and promoting rescue, the switch-like transitions between growth and shrinkage. How CLASPs specifically modulate microtubule transitions is not understood. Here, we investigate the effects of CLASPs on the pre-catastrophe intermediate state of microtubule dynamics, employing distinct microtubule substrates to mimic the intermediate state. Surprisingly, we find that CLASP1 promotes the depolymerization of stabilized microtubules in the presence of GTP, but not in the absence of nucleotide. This activity is also observed for CLASP2 family members and a minimal TOG2-domain construct. Conversely, we find that CLASP1 stabilizes unstable microtubules upon tubulin dilution in the presence of GTP. Strikingly, our results reveal that CLASP1 drives microtubule substrates with vastly different inherent stabilities into the same slowly depolymerizing state in a nucleotide-dependent manner. We interpret this state as the pre-catastrophe intermediate state. Therefore, we conclude that CLASPs suppress microtubule catastrophe by stabilizing the intermediate state between growth and shrinkage.
Collapse
Affiliation(s)
- Elizabeth J. Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Ti SC. Reconstituting Microtubules: A Decades-Long Effort From Building Block Identification to the Generation of Recombinant α/β-Tubulin. Front Cell Dev Biol 2022; 10:861648. [PMID: 35573669 PMCID: PMC9096264 DOI: 10.3389/fcell.2022.861648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules are cytoskeletal filaments underlying the morphology and functions of all eukaryotic cells. In higher eukaryotes, the basic building blocks of these non-covalent polymers, ɑ- and β-tubulins, are encoded by expanded tubulin family genes (i.e., isotypes) at distinct loci in the genome. While ɑ/β-tubulin heterodimers have been isolated and examined for more than 50 years, how tubulin isotypes contribute to the microtubule organization and functions that support diverse cellular architectures remains a fundamental question. To address this knowledge gap, in vitro reconstitution of microtubules with purified ɑ/β-tubulin proteins has been employed for biochemical and biophysical characterization. These in vitro assays have provided mechanistic insights into the regulation of microtubule dynamics, stability, and interactions with other associated proteins. Here we survey the evolving strategies of generating purified ɑ/β-tubulin heterodimers and highlight the advances in tubulin protein biochemistry that shed light on the roles of tubulin isotypes in determining microtubule structures and properties.
Collapse
|
5
|
Povedano JM, Rallabandi R, Bai X, Ye X, Liou J, Chen H, Kim J, Xie Y, Posner B, Rice L, De Brabander JK, McFadden DG. A Multipronged Approach Establishes Covalent Modification of β-Tubulin as the Mode of Action of Benzamide Anti-cancer Toxins. J Med Chem 2020; 63:14054-14066. [PMID: 33180487 PMCID: PMC7707623 DOI: 10.1021/acs.jmedchem.0c01482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A phenotypic
high-throughput screen identified a benzamide small
molecule with activity against small cell lung cancer cells. A “clickable”
benzamide probe was designed that irreversibly bound a single 50 kDa
cellular protein, identified by mass spectrometry as β-tubulin.
Moreover, the anti-cancer potency of a series of benzamide analogs
strongly correlated with probe competition, indicating that β-tubulin
was the functional target. Additional evidence suggested that benzamides
covalently modified Cys239 within the colchicine binding site. Consistent
with this mechanism, benzamides impaired growth of microtubules formed
with β-tubulin harboring Cys239, but not β3 tubulin encoding Ser239. We therefore designed an aldehyde-containing
analog capable of trapping Ser239 in β3 tubulin,
presumably as a hemiacetal. Using a forward genetics strategy, we
identified benzamide-resistant cell lines harboring a Thr238Ala mutation
in β-tubulin sufficient to induce compound resistance. The disclosed
chemical probes are useful to identify other colchicine site binders,
a frequent target of structurally diverse small molecules.
Collapse
Affiliation(s)
- Juan Manuel Povedano
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Rameshu Rallabandi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xin Bai
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xuecheng Ye
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Joel Liou
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hong Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Luke Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - David G McFadden
- Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.,Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
6
|
Li F, Li Y, Ye X, Gao H, Shi Z, Luo X, Rice LM, Yu H. Cryo-EM structure of VASH1-SVBP bound to microtubules. eLife 2020; 9:58157. [PMID: 32773040 PMCID: PMC7449697 DOI: 10.7554/elife.58157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The dynamic tyrosination-detyrosination cycle of α-tubulin regulates microtubule functions. Perturbation of this cycle impairs mitosis, neural physiology, and cardiomyocyte contraction. The carboxypeptidases vasohibins 1 and 2 (VASH1 and VASH2), in complex with the small vasohibin-binding protein (SVBP), mediate α-tubulin detyrosination. These enzymes detyrosinate microtubules more efficiently than soluble αβ-tubulin heterodimers. The structural basis for this substrate preference is not understood. Using cryo-electron microscopy (cryo-EM), we have determined the structure of human VASH1-SVBP bound to microtubules. The acidic C-terminal tail of α-tubulin binds to a positively charged groove near the active site of VASH1. VASH1 forms multiple additional contacts with the globular domain of α-tubulin, including contacts with a second α-tubulin in an adjacent protofilament. Simultaneous engagement of two protofilaments by VASH1 can only occur within the microtubule lattice, but not with free αβ heterodimers. These lattice-specific interactions enable preferential detyrosination of microtubules by VASH1.
Collapse
Affiliation(s)
- Faxiang Li
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuecheng Ye
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Haishan Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhubing Shi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luke M Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
7
|
Ye X, Kim T, Geyer EA, Rice LM. Insights into allosteric control of microtubule dynamics from a buried β-tubulin mutation that causes faster growth and slower shrinkage. Protein Sci 2020; 29:1429-1439. [PMID: 32077153 DOI: 10.1002/pro.3842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023]
Abstract
αβ-tubulin subunits cycle through a series of different conformations in the polymer lattice during microtubule growing and shrinking. How these allosteric responses to different tubulin:tubulin contacts contribute to microtubule dynamics, and whether the contributions are evolutionarily conserved, remains poorly understood. Here, we sought to determine whether the microtubule-stabilizing effects (slower shrinking) of the β:T238A mutation we previously observed using yeast αβ-tubulin would generalize to mammalian microtubules. Using recombinant human microtubules as a model, we found that the mutation caused slow microtubule shrinking, indicating that this effect of the mutation is indeed conserved. However, unlike in yeast, β:T238A human microtubules grew faster than wild-type and the mutation did not appear to attenuate the conformational change associated with guanosine 5'-triphosphate (GTP) hydrolysis in the lattice. We conclude that the assembly-dependent conformational change in αβ-tubulin can contribute to determine the rates of microtubule growing as well as shrinking. Our results also suggest that an allosteric perturbation like the β:T238A mutation can alter the behavior of terminal subunits without accompanying changes in the conformation of fully surrounded subunits in the body of the microtubule.
Collapse
Affiliation(s)
- Xuecheng Ye
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Tae Kim
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Elisabeth A Geyer
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Luke M Rice
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| |
Collapse
|