1
|
Baskakova KO, Kuzmichev PK, Karbyshev MS. Advanced applications of Nanodiscs-based platforms for antibodies discovery. Biophys Chem 2024; 313:107290. [PMID: 39002246 DOI: 10.1016/j.bpc.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.
Collapse
Affiliation(s)
- Kristina O Baskakova
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Pavel K Kuzmichev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
| | - Mikhail S Karbyshev
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| |
Collapse
|
2
|
Knetsch TGJ, Ubbink M. Lipid composition affects the thermal stability of cytochrome P450 3A4 in nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184372. [PMID: 39047858 DOI: 10.1016/j.bbamem.2024.184372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Nanodiscs (NDs), self-assembled lipid bilayers encircled by membrane scaffold proteins (MSPs), offer a versatile platform for the reconstitution of membrane proteins for structural and biochemical investigations. Saturated, isoprenoid lipids are commonly found in thermophiles and have been associated with thermotolerance. To test whether these lipids confer additional stability on ND-incorporated membrane proteins, this study focuses on the thermal stability of human cytochrome P450 3A4 (CYP3A4) inside NDs composed of different phosphocholine lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). NDs were characterized using size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) and densitometric SDS-PAGE. CYP3A4-DPhPC-NDs were found to comprise three MSP copies instead of the canonical dimer, as reported before for the empty NDs. Rapid, thermally induced unfolding of CYP3A4 inside NDs measured using circular dichroism and differential scanning fluorimetry (nanoDSF) revealed that the CYP3A4 melting temperature was dependent on ND composition. In POPC and DMPC-CYP3A4-NDs the melting temperature was comparable to CYP3A4 without NDs (59 °C). CYP3A4 in DPhPC-NDs showed an increase in melting temperature of 4 °C. Decline in CYP3A4 integrity as well as ND aggregation and disintegration occur at similar rates for all membrane types when subjected to exposure at 37 °C for several hours. The POPC and DMPC- CYP3A4-NDs show significant lipid loss over time, which is not observed for DPhPC-NDs. The results demonstrate that thermally induced denaturation of protein-NDs is a complex, multifaceted process, which is not represented well by rapid thermal unfolding experiments.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
3
|
Waeterschoot J, Barniol-Xicota M, Verhelst S, Baatsen P, Koos E, Lammertyn J, Casadevall i Solvas X. Lipid vesicle formation by encapsulation of SMALPs in surfactant-stabilised droplets. Heliyon 2024; 10:e37915. [PMID: 39347415 PMCID: PMC11437848 DOI: 10.1016/j.heliyon.2024.e37915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Understanding the intricate functions of membrane proteins is pivotal in cell biology and drug discovery. The composition of the cell membrane is highly complex, with different types of membrane proteins and lipid species. Hence, studying cellular membranes in a complexity-reduced context is important to enhance our understanding of the roles of these different elements. However, reconstitution of membrane proteins in an environment that closely mimics the cell, like giant unilamellar vesicles (GUVs), remains challenging, often requiring detergents that compromise protein function. To address this challenge, we present a novel strategy to manufacture GUVs from styrene maleic acid lipid particles (SMALPs) that utilises surfactant-stabilised droplets as a template. As a first step towards the incorporation of membrane proteins, this work focusses on the conversion of pure lipid SMALPs in GUVs. To evaluate the method, we produced a new form of SMA linked to fluorescein, referred to as FSMA. We demonstrate the assembly of SMALPs at the surfactant-stabilised droplet interface, resulting in the formation of GUVs when released upon addition of a demulsifying agent. The released vesicles appear similar to electroformed vesicles imaged with confocal light microscopy, but a fluorescein leakage assay and cryo-TEM imaging reveal their porous nature, potentially as a result of residual interactions of SMA with the lipid bilayer. Our study represents a significant step towards opening new avenues for comprehensive protein research in a complexity-reduced, yet biologically relevant, setting.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Biomimetics Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marta Barniol-Xicota
- Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Steven Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven – University of Leuven, Herestraat 49, box 901b, 3000 Leuven, Belgium
| | - Pieter Baatsen
- Center for the Biology of Disease, VIB, Herestraat 49, Leuven, 3000, Belgium
| | - Erin Koos
- Soft Matter, Rheology and Technology (SMaRT) at KU Leuven, Celestijnenlaan 200J, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- Biosensors Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium
| | - Xavier Casadevall i Solvas
- Biomimetics Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Dong Y, Tang H, Dai H, Zhao H, Wang J. The application of nanodiscs in membrane protein drug discovery & development and drug delivery. Front Chem 2024; 12:1444801. [PMID: 39359422 PMCID: PMC11445163 DOI: 10.3389/fchem.2024.1444801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The phospholipid bilayer nanodiscs (LNDs), as a rapidly-developing tool in recent years, provide a natural bio-memebrane environment to maintain the native conformation and functions of membrane proteins as well as a versatile delivery vehicle for a variety of hydrophobic and hydrophilic drugs. We have seen unprecedented advantages of phospholipid bilayer nanodiscs in membrane protein structure characterization, biochemical and physiological studies of membrane proteins, membrane environment studies, drug discovery & development, and drug delivery. Many previous reviews have been mainly focused on the advantages of nanodiscs in membrane protein researches, but few have touched upon the importance and potential application of nanodiscs in pharmaceutical industries. This review will provide general description of the structural characteristics, advantages, classification, and applications of phospholipid nanodiscs, with particular focus on nanodisc-enabled membrane protein drug discovery & development as well as drug delivery.
Collapse
Affiliation(s)
- Yingkui Dong
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Huan Tang
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Han Dai
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
5
|
Zuckermann FA, Grinkova YV, Husmann RJ, Pires-Alves M, Storms S, Chen WY, Sligar SG. An effective vaccine against influenza A virus based on the matrix protein 2 (M2). Vet Microbiol 2024; 298:110245. [PMID: 39293153 DOI: 10.1016/j.vetmic.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024]
Abstract
The ever-increasing antigenic diversity of the hemagglutinin (HA) of influenza A virus (IAV) poses a significant challenge for effective vaccine development. Notably, the matrix protein 2 (M2) is a highly conserved 97 amino acid long transmembrane tetrameric protein present in the envelope of IAV. More than 99 % of IAV strains circulating in American swine herds share the identical pandemic (pdm) isoform of M2, making it an ideal target antigen for a vaccine that could elicit broadly protective immunity. Here, using soluble nanoscale membrane assemblies termed nanodiscs (NDs), we designed this membrane mimetic nanostructures displaying full-length M2 in its natural transmembrane configuration (M2ND). Intramuscular (IM) immunization of swine with M2ND mixed with conventional emulsion adjuvant elicited M2-specific IgG antibodies in the serum that recognized influenza virions and M2-specific interferon-γ secreting cells present in the blood. Intranasal (IN) immunization with M2ND adjuvanted with a mycobacterial extract elicited M2-specific IgA in mucosal secretions that also recognized IAV. Immunization with an influenza whole inactivated virus (WIV) vaccine supplemented with a concurrent IM injection of M2ND mixed with an emulsion adjuvant increased the level of protective immunity afforded by the former against a challenge with an antigenically distinct H3N2 IAV, as exhibited by an enhanced elimination of virus from the lung. The lone IM administration of the M2ND vaccine mixed with an emulsion adjuvant provided measurable protection as evidenced by a >10-fold reduction or complete elimination of the challenge virus from the lung, but it did not diminish the viral load in nasal secretions nor the extent of pneumonia that ensued after the virus challenge. In contrast, an improved formulation of the M2ND vaccine that incorporated synthetic CpG oligodeoxynucleotides (CpG-ODN) in the nanostructures administered alone, via the IN and IM routes combined, provided a significant level of protective immunity against IAV as evidenced by a decreased viral load in both the upper and lower respiratory tracts and fully eliminated the occurrence of pneumonia in 89 % of the pigs immunized with this biologic. Notably, to be effective, the M2 protein must be displayed in the ND assemblies, as shown by the observation that simply mixing M2 with empty NDs incorporating CpG-ODN (eND-CpG-ODN) did not provide protective immunity. This novel M2-based vaccine offers great promise to help increase the breadth of protection afforded by conventional WIV vaccines against the diversity of IAV in circulation and, plausibly, as a broadly protective stand-alone biologic.
Collapse
Affiliation(s)
- Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA.
| | - Yelena V Grinkova
- Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Robert J Husmann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Melissa Pires-Alves
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Suzanna Storms
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Wei-Yu Chen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Stephen G Sligar
- Department of Biochemistry, 505 South Goodwin Avenue, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Denisov IG, Sligar SG. Nanodiscs for the study of membrane proteins. Curr Opin Struct Biol 2024; 87:102844. [PMID: 38795563 PMCID: PMC11283964 DOI: 10.1016/j.sbi.2024.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Nanodiscs represent a versatile tool for studies of membrane proteins and protein-membrane interactions under native-like conditions. Multiple variations of the Nanodisc platform, as well as new experimental methods, have been recently developed to understand various aspects of structure, dynamics and functional properties of systems involved in signaling, transport, blood coagulation and many other critically important processes. In this mini-review, we focus on some of these exciting recent developments that utilize the Nanodisc platform.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Rouchidane Eyitayo A, Daury L, Priault M, Manon S. The membrane insertion of the pro-apoptotic protein Bax is a Tom22-dependent multi-step process: a study in nanodiscs. Cell Death Discov 2024; 10:335. [PMID: 39043635 PMCID: PMC11266675 DOI: 10.1038/s41420-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Membrane insertion of the pro-apoptotic protein Bax was investigated by setting up cell-free synthesis of full-length Bax in the presence of pre-formed nanodiscs. While Bax was spontaneously poorly inserted in nanodiscs, co-synthesis with the mitochondrial receptor Tom22 stimulated Bax membrane insertion. The initial interaction of Bax with the lipid bilayer exposed the hydrophobic GALLL motif in Hα1 leading to Bax precipitation through hydrophobic interactions. The same motif was recognized by Tom22, triggering conformational changes leading to the extrusion and the ensuing membrane insertion of the C-terminal hydrophobic Hα9. Tom22 was also required for Bax-membrane insertion after Bax was activated either by BH3-activators or by its release from Bcl-xL by WEHI-539. The effect of Tom22 was impaired by D154Y substitution in Bax-Hα7 and T174P substitution in Bax-Hα9, which are found in several tumors. Conversely, a R9E substitution promoted a spontaneous insertion of Bax in nanodiscs, in the absence of Tom22. Both Tom22-activated Bax and BaxR9E alone permeabilized liposomes to dextran-10kDa and formed ~5-nm-diameter pores in nanodiscs. The concerted regulation of Bax membrane insertion by Tom22 and BH3-activators is discussed.
Collapse
Affiliation(s)
| | - Laetitia Daury
- CNRS, Université de Bordeaux, UMR 5248, CBMN, Pessac, France
| | - Muriel Priault
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France
| | - Stéphen Manon
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France.
| |
Collapse
|
8
|
Wang Y, Jin P, Kumar A, Jan L, Cheng Y, Jan YN, Zhang Y. Nonlinear compliance of NompC gating spring and its implication in mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599842. [PMID: 38979198 PMCID: PMC11230213 DOI: 10.1101/2024.06.20.599842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cytoskeleton-tethered mechanosensitive channels (MSCs) utilize compliant proteins or protein domains called gating springs to convert mechanical stimuli into electric signals, enabling sound and touch sensation and proprioception. The mechanical properties of these gating springs, however, remain elusive. Here, we explored the mechanical properties of the homotetrameric NompC complex containing long ankyrin-repeat domains (ARDs). We developed a toehold-mediated strand displacement approach to tether single membrane proteins, allowing us to exert force on them and precisely measure their absolute extension using optical tweezers. Our findings revealed that each ARD has a low stiffness of ~0.7 pN/nm and begins to unfold stepwise at ~7 pN, leading to nonlinear compliance. Our calculations indicate that this nonlinear compliance may help regulate NompC's sensitivity, dynamic range, and kinetics to detect mechanical stimuli. Overall, our research highlights the importance of a compliant and unfolding-refolding gating spring in facilitating a graded response of MSC ion transduction across a wide spectrum of mechanical stimuli.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Jin
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Lily Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Krishnarjuna B, Sharma G, Hiiuk VM, Struppe J, Nagorny P, Ivanova MI, Ramamoorthy A. Nanodisc Reconstitution and Characterization of Amyloid-β Precursor Protein C99. Anal Chem 2024; 96:9362-9369. [PMID: 38826107 DOI: 10.1021/acs.analchem.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease (AD). Since the fragmentation of the membrane-bound APP that results in the production of amyloid-β peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable and suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in the native Escherichia. coli membrane environment is demonstrated.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gaurav Sharma
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Volodymyr M Hiiuk
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
10
|
Dadsena S, Cuevas Arenas R, Vieira G, Brodesser S, Melo MN, García-Sáez AJ. Lipid unsaturation promotes BAX and BAK pore activity during apoptosis. Nat Commun 2024; 15:4700. [PMID: 38830851 PMCID: PMC11148036 DOI: 10.1038/s41467-024-49067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Rodrigo Cuevas Arenas
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CG, Utrecht, The Netherlands
| | - Gonçalo Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
- Department of Membrane Dynamics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Wang B, Tieleman DP. The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches. Biophys Chem 2024; 309:107231. [PMID: 38569455 DOI: 10.1016/j.bpc.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.
Collapse
Affiliation(s)
- Beibei Wang
- Centre for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
12
|
Dong Y, Li M, Kang L, Wang W, Li Z, Wang Y, Wu Z, Zhu C, Zhu L, Zheng X, Qian D, Dai H, Wu B, Zhao H, Wang J. A new preparation method of covalent annular nanodiscs based on MTGase. Arch Biochem Biophys 2024; 756:109997. [PMID: 38621443 DOI: 10.1016/j.abb.2024.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The preservation of the native conformation and functionality of membrane proteins has posed considerable challenges. While detergents and liposome reconstitution have been traditional approaches, nanodiscs (NDs) offer a promising solution by embedding membrane proteins in phospholipids encircled by an amphipathic helical protein MSP belt. Nevertheless, a drawback of commonly used NDs is their limited homogeneity and stability. In this study, we present a novel approach to construct covalent annular nanodiscs (cNDs) by leveraging microbial transglutaminase (MTGase) to catalyze isopeptide bond formation between the side chains of terminal amino acids, specifically Lysine (K) and Glutamine (Q). This methodology significantly enhances the homogeneity and stability of NDs. Characterization of cNDs and the assembly of membrane proteins within them validate the successful reconstitution of membrane proteins with improved homogeneity and stability. Our findings suggest that cNDs represent a more suitable tool for investigating interactions between membrane proteins and lipids, as well as for analyzing membrane protein structures.
Collapse
Affiliation(s)
- Yingkui Dong
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China; High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Ming Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li Kang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China; High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Wanxue Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zehua Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yizhuo Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ziwei Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chenchen Zhu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Zhu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xinwei Zheng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Dongming Qian
- Hefei China Science Longwood Biological Technology Co., Ltd. Hefei, Anhui, 230088, China
| | - Han Dai
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Hefei China Science Longwood Biological Technology Co., Ltd. Hefei, Anhui, 230088, China
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Hefei China Science Longwood Biological Technology Co., Ltd. Hefei, Anhui, 230088, China.
| | - Junfeng Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China; High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
13
|
Krishnarjuna B, Sharma G, Hiiuk VM, Struppe J, Nagorny P, Ivanova MI, Ramamoorthy A. Nanodisc reconstitution and characterization of amyloid-β precursor protein C99. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590446. [PMID: 38659865 PMCID: PMC11042261 DOI: 10.1101/2024.04.21.590446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease. Since the fragmentation of the membrane-bound APP that results in the production of amyloid-beta peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable/suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in native E. coli membrane environment is demonstrated.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Gaurav Sharma
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Volodymyr M Hiiuk
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States
| |
Collapse
|
14
|
Jandu RS, Yu H, Zhao Z, Le HT, Kim S, Huan T, Duong van Hoa F. Capture of endogenous lipids in peptidiscs and effect on protein stability and activity. iScience 2024; 27:109382. [PMID: 38577106 PMCID: PMC10993126 DOI: 10.1016/j.isci.2024.109382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Compared to protein-protein and protein-nucleic acid interactions, our knowledge of protein-lipid interactions remains limited. This is primarily due to the inherent insolubility of membrane proteins (MPs) in aqueous solution. The traditional use of detergents to overcome the solubility barrier destabilizes MPs and strips away certain lipids that are increasingly recognized as crucial for protein function. Recently, membrane mimetics have been developed to circumvent the limitations. In this study, using the peptidisc, we find that MPs in different lipid states can be isolated based on protein purification and reconstitution methods, leading to observable effects on MP activity and stability. Peptidisc also enables re-incorporating specific lipids to fine-tune the protein microenvironment and assess the impact on downstream protein associations. This study offers a first look at the illusive protein-lipid interaction specificity, laying the path for a systematic evaluation of lipid identity and contributions to membrane protein function.
Collapse
Affiliation(s)
- Rupinder Singh Jandu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Huaxu Yu
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hai Tuong Le
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sehyeon Kim
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
15
|
Babot M, Boulard Y, Agouda S, Pieri L, Fieulaine S, Bressanelli S, Gervais V. Oligomeric assembly of the C-terminal and transmembrane region of SARS-CoV-2 nsp3. J Virol 2024; 98:e0157523. [PMID: 38483167 PMCID: PMC11019948 DOI: 10.1128/jvi.01575-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/22/2024] [Indexed: 04/17/2024] Open
Abstract
As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.
Collapse
Affiliation(s)
- Marion Babot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Samira Agouda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Pieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
16
|
Ayub H, Murray RJ, Kuyler GC, Napier-Khwaja F, Gunner J, Dafforn TR, Klumperman B, Poyner DR, Wheatley M. GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs. Arch Biochem Biophys 2024; 754:109946. [PMID: 38395122 DOI: 10.1016/j.abb.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30-40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and β-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid 'landscape' is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of research currently. A major advance in membrane protein research in recent years was the application of poly(styrene-co-maleic acid) (SMA) copolymers. These spontaneously generate SMA lipid particles (SMALPs) encapsulating membrane protein in a nano-scale disc of cell membrane, thereby removing the historical need for detergent and preserving lipid:GPCR interaction. The focus of this review is how GPCR-SMALPs are increasing our understanding of GPCR structure and function at the molecular level. Furthermore, an increasing number of 'second generation' SMA-like copolymers have been reported recently. These are reviewed from the context of increasing our understanding of GPCR molecular mechanisms. Moreover, their potential as a novel platform for downstream biophysical and structural analyses is assessed and looking ahead, the translational application of SMA-like copolymers to GPCR drug discovery programmes in the future is considered.
Collapse
Affiliation(s)
- Hoor Ayub
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK.
| | - Rebecca J Murray
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gestél C Kuyler
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Joseph Gunner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bert Klumperman
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Mark Wheatley
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
17
|
Lee KY. Membrane-Driven Dimerization of the Peripheral Membrane Protein KRAS: Implications for Downstream Signaling. Int J Mol Sci 2024; 25:2530. [PMID: 38473778 DOI: 10.3390/ijms25052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Transient homo-dimerization of the RAS GTPase at the plasma membrane has been shown to promote the mitogen-activated protein kinase (MAPK) signaling pathway essential for cell proliferation and oncogenesis. To date, numerous crystallographic studies have focused on the well-defined GTPase domains of RAS isoforms, which lack the disordered C-terminal membrane anchor, thus providing limited structural insight into membrane-bound RAS molecules. Recently, lipid-bilayer nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses have revealed several distinct structures of the membrane-anchored homodimers of KRAS, an isoform that is most frequently mutated in human cancers. The KRAS dimerization interface is highly plastic and altered by biologically relevant conditions, including oncogenic mutations, the nucleotide states of the protein, and the lipid composition. Notably, PRE-derived structures of KRAS homodimers on the membrane substantially differ in terms of the relative orientation of the protomers at an "α-α" dimer interface comprising two α4-α5 regions. This interface plasticity along with the altered orientations of KRAS on the membrane impact the accessibility of KRAS to downstream effectors and regulatory proteins. Further, nanodisc platforms used to drive KRAS dimerization can be used to screen potential anticancer drugs that target membrane-bound RAS dimers and probe their structural mechanism of action.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
18
|
Murugan S, Iqbal T, Das D. Functional production and biochemical investigation of an integral membrane enzyme for olefin biosynthesis. Protein Sci 2024; 33:e4893. [PMID: 38160318 PMCID: PMC10804661 DOI: 10.1002/pro.4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Integral membrane enzymes play essential roles in a plethora of biochemical processes. The fatty acid desaturases (FADS)-like superfamily is an important group of integral membrane enzymes that catalyze a wide array of reactions, including hydroxylation, desaturation, and cyclization; however, due to the membrane-bound nature, the majority of these enzymes have remained poorly understood. UndB is a member of the FADS-like superfamily, which catalyzes fatty acid decarboxylation, a chemically challenging reaction at the membrane interface. UndB reaction produces terminal olefins that are prominent biofuel candidates and building blocks of polymers with widespread industrial applications. Despite the great importance of UndB for several biotechnological applications, the enzyme has eluded comprehensive investigation. Here, we report details of the expression, solubilization, and purification of several constructs of UndB to achieve the optimally functional enzyme. We gained important insights into the biochemical, biophysical, and catalytic properties of UndB, including the thermal stability and factors influencing the enzyme activity. Additionally, we established the ability and kinetics of UndB to produce dienes by performing di-decarboxylation of diacids. We found that the reaction proceeds by forming a mono-carboxylic acid intermediate. Our findings shed light on the unexplored biochemical properties of the UndB and extend opportunities for its rigorous mechanistic and structural characterization.
Collapse
Affiliation(s)
- Subhashini Murugan
- Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
| | - Tabish Iqbal
- Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
| | - Debasis Das
- Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
19
|
Dalal V, Arcario MJ, Petroff JT, Tan BK, Dietzen NM, Rau MJ, Fitzpatrick JAJ, Brannigan G, Cheng WWL. Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel. Nat Commun 2024; 15:25. [PMID: 38167383 PMCID: PMC10762164 DOI: 10.1038/s41467-023-44366-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Lipid nanodiscs have become a standard tool for studying membrane proteins, including using single particle cryo-electron microscopy (cryo-EM). We find that reconstituting the pentameric ligand-gated ion channel (pLGIC), Erwinia ligand-gated ion channel (ELIC), in different nanodiscs produces distinct structures by cryo-EM. The effect of the nanodisc on ELIC structure extends to the extracellular domain and agonist binding site. Additionally, molecular dynamic simulations indicate that nanodiscs of different size impact ELIC structure and that the nanodisc scaffold directly interacts with ELIC. These findings suggest that the nanodisc plays a crucial role in determining the structure of pLGICs, and that reconstitution of ion channels in larger nanodiscs may better approximate a lipid membrane environment.
Collapse
Affiliation(s)
- Vikram Dalal
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark J Arcario
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John T Petroff
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brandon K Tan
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Noah M Dietzen
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
- Department of Physics, Rutgers University, Camden, NJ, USA
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
20
|
Walker G, Brown C, Ge X, Kumar S, Muzumdar MD, Gupta K, Bhattacharyya M. Oligomeric organization of membrane proteins from native membranes at nanoscale spatial and single-molecule resolution. NATURE NANOTECHNOLOGY 2024; 19:85-94. [PMID: 38012273 PMCID: PMC10981947 DOI: 10.1038/s41565-023-01547-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The oligomeric organization of membrane proteins in native cell membranes is a critical regulator of their function. High-resolution quantitative measurements of oligomeric assemblies and how they change under different conditions are indispensable to understanding membrane protein biology. We report Native-nanoBleach, a total internal reflection fluorescence microscopy-based single-molecule photobleaching step analysis technique to determine the oligomeric distribution of membrane proteins directly from native membranes at an effective spatial resolution of ~10 nm. We achieved this by capturing target membrane proteins in native nanodiscs with their proximal native membrane environment using amphipathic copolymers. We applied Native-nanoBleach to quantify the oligomerization status of structurally and functionally diverse membrane proteins, including a receptor tyrosine kinase (TrkA) and a small GTPase (KRas) under growth-factor binding and oncogenic mutations, respectively. Our data suggest that Native-nanoBleach provides a sensitive, single-molecule platform to quantify membrane protein oligomeric distributions in native membranes under physiologically and clinically relevant conditions.
Collapse
Affiliation(s)
- Gerard Walker
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Caroline Brown
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Xiangyu Ge
- Department of Pathology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mandar D Muzumdar
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Yale Cancer Center, New Haven, USA
| | - Kallol Gupta
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | | |
Collapse
|
21
|
Krishnarjuna B, Sharma G, Ravula T, Ramamoorthy A. Factors influencing the detergent-free membrane protein isolation using synthetic nanodisc-forming polymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184240. [PMID: 37866688 DOI: 10.1016/j.bbamem.2023.184240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The detergent-free isolation of membrane proteins using synthetic polymers is becoming the desired approach for functional and structural studies of membrane proteins. Since the expression levels for many membrane proteins are low and a high yield of functionalized reconstituted membrane proteins is essential for in vitro studies, it is crucial to optimize the experimental conditions for a given polymer to solubilize target membranes/proteins effectively. The factors that affect membrane solubilization and subsequently the isolation of a target membrane protein include polymer concentration, polymer charge, temperature, pH, and concentration of divalent metal ions. Therefore, it is important to have knowledge about the efficacy of different types of polymers in solubilizing cell membranes. In this study, we evaluate the efficacy of inulin-based non-ionic polymers in solubilizing E. coli membranes enriched with rat flavin mononucleotide binding-domain (FBD) of cytochrome-P450-reductase (CPR) and rabbit cytochrome-b5 (Cyt-b5) under various solubilization conditions. Our results show that a 1:1 (w/w) membrane:polymer ratio, low temperature, high pH and sub-millimolar concentration of metal ions favor the solubilization of E. coli membranes enriched with FBD or Cyt-b5. Conversely, the presence of excess divalent metal ions affected the final protein levels in the polymer-solubilized samples. We believe that the results from this study provide knowledge to assess and plan the use of non-ionic polymers in membrane protein studies.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Gaurav Sharma
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA.
| |
Collapse
|
22
|
Liu W, Jayasekera HS, Sanders JD, Zhang G, Viner R, Marty MT. Online Buffer Exchange Enables Automated Membrane Protein Analysis by Native Mass Spectrometry. Anal Chem 2023; 95:17212-17219. [PMID: 37963237 PMCID: PMC10696660 DOI: 10.1021/acs.analchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Membrane proteins represent the majority of clinical drug targets and are actively involved in a range of cellular processes. However, the complexity of membrane mimetics for membrane protein solubilization poses challenges for native mass spectrometry (MS) analyses. The most common approach for native MS analyses of membrane proteins remains offline buffer exchange into native MS-compatible buffers prior to manual sample loading into static nano-ESI emitters. This laborious process requires relatively high sample consumption and optimization for the individual proteins. Here, we developed online buffer exchange coupled to native mass spectrometry (OBE-nMS) for analyzing membrane proteins in different membrane mimetics, including detergent micelles and nanodiscs. Detergent screening for OBE-nMS reveals that mobile phases containing ammonium acetate with lauryl-dimethylamine oxide are most universal for characterizing both bacterial and mammalian membrane proteins in detergent. Membrane proteins in nanodiscs simply require ammonium acetate as the mobile phase. To preserve the intact nanodiscs, a novel switching electrospray approach was used to capture the high-flow separation on the column with a low-flow injection to MS. Rapid OBE-nMS completes each membrane protein measurement within minutes and thus enables higher-throughput assessment of membrane protein integrity prior to its structural elucidation.
Collapse
Affiliation(s)
- Weijing Liu
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA 95134
| | - Hiruni S. Jayasekera
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - James D. Sanders
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA 95134
| | - Michael T. Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
23
|
Stępień P, Świątek S, Robles MYY, Markiewicz-Mizera J, Balakrishnan D, Inaba-Inoue S, De Vries AH, Beis K, Marrink SJ, Heddle JG. CRAFTing Delivery of Membrane Proteins into Protocells using Nanodiscs. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 38015973 PMCID: PMC10726305 DOI: 10.1021/acsami.3c11894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
For the successful generative engineering of functional artificial cells, a convenient and controllable means of delivering membrane proteins into membrane lipid bilayers is necessary. Here we report a delivery system that achieves this by employing membrane protein-carrying nanodiscs and the calcium-dependent fusion of phosphatidylserine lipid membranes. We show that lipid nanodiscs can fuse a transported lipid bilayer with the lipid bilayers of small unilamellar vesicles (SUVs) or giant unilamellar vesicles (GUVs) while avoiding recipient vesicles aggregation. This is triggered by a simple, transient increase in calcium concentration, which results in efficient and rapid fusion in a one-pot reaction. Furthermore, nanodiscs can be loaded with membrane proteins that can be delivered into target SUV or GUV membranes in a detergent-independent fashion while retaining their functionality. Nanodiscs have a proven ability to carry a wide range of membrane proteins, control their oligomeric state, and are highly adaptable. Given this, our approach may be the basis for the development of useful tools that will allow bespoke delivery of membrane proteins to protocells, equipping them with the cell-like ability to exchange material across outer/subcellular membranes.
Collapse
Affiliation(s)
- Piotr Stępień
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Sylwia Świątek
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | | | | | - Dhanasekaran Balakrishnan
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- Postgraduate
School of Molecular Medicine, Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Alex H. De Vries
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jonathan G. Heddle
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
24
|
Workman CE, Bag P, Cawthon B, Ali FH, Brady NG, Bruce BD, Long BK. Alternatives to Styrene- and Diisobutylene-Based Copolymers for Membrane Protein Solubilization via Nanodisc Formation. Angew Chem Int Ed Engl 2023; 62:e202306572. [PMID: 37682083 PMCID: PMC10591821 DOI: 10.1002/anie.202306572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Styrene-maleic acid copolymers (SMAs), and related amphiphilic copolymers, are promising tools for isolating and studying integral membrane proteins in a native-like state. However, they do not exhibit this ability universally, as several reports have found that SMAs and related amphiphilic copolymers show little to no efficiency when extracting specific membrane proteins. Recently, it was discovered that esterified SMAs could enhance the selective extraction of trimeric Photosystem I from the thylakoid membranes of thermophilic cyanobacteria; however, these polymers are susceptible to saponification that can result from harsh preparation or storage conditions. To address this concern, we herein describe the development of α-olefin-maleic acid copolymers (αMAs) that can extract trimeric PSI from cyanobacterial membranes with the highest extraction efficiencies observed when using any amphiphilic copolymers, including diisobutylene-co-maleic acid (DIBMA) and functionalized SMA samples. Furthermore, we will show that αMAs facilitate the formation of photosystem I-containing nanodiscs that retain an annulus of native lipids and a native-like activity. We also highlight how αMAs provide an agile, tailorable synthetic platform that enables fine-tuning hydrophobicity, controllable molar mass, and consistent monomer incorporation while overcoming shortcomings of prior amphiphilic copolymers.
Collapse
Affiliation(s)
| | - Pushan Bag
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Bridgie Cawthon
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Fidaa H Ali
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Nathan G Brady
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, USA
| | - Brian K Long
- Department of Chemistry, University of Tennessee, Knoxville, USA
| |
Collapse
|
25
|
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, Harb F. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023; 28:7176. [PMID: 37894653 PMCID: PMC10608922 DOI: 10.3390/molecules28207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic cells, membrane proteins play a crucial role. They fall into three categories: intrinsic proteins, extrinsic proteins, and proteins that are essential to the human genome (30% of which is devoted to encoding them). Hydrophobic interactions inside the membrane serve to stabilize integral proteins, which span the lipid bilayer. This review investigates a number of computational and experimental methods used to study membrane proteins. It encompasses a variety of technologies, including electrophoresis, X-ray crystallography, cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance spectroscopy (NMR), biophysical methods, computational methods, and artificial intelligence. The link between structure and function of membrane proteins has been better understood thanks to these approaches, which also hold great promise for future study in the field. The significance of fusing artificial intelligence with experimental data to improve our comprehension of membrane protein biology is also covered in this paper. This effort aims to shed light on the complexity of membrane protein biology by investigating a variety of experimental and computational methods. Overall, the goal of this review is to emphasize how crucial it is to understand the functions of membrane proteins in eukaryotic cells. It gives a general review of the numerous methods used to look into these crucial elements and highlights the demand for multidisciplinary approaches to advance our understanding.
Collapse
Affiliation(s)
- Imad Boulos
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Joy Jabbour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Serena Khoury
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Nehme Mikhael
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Victoria Tishkova
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Nadine Candoni
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Stéphane Veesler
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Youssef Bassim
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Frédéric Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| |
Collapse
|
26
|
Janata M, Gupta S, Čadová E, Angelisová P, Krishnarjuna B, Ramamoorthy A, Hořejší V, Raus V. Sulfonated polystyrenes: pH and Mg 2+-insensitive amphiphilic copolymers for detergent-free membrane protein isolation. Eur Polym J 2023; 198:112412. [PMID: 37780808 PMCID: PMC10538444 DOI: 10.1016/j.eurpolymj.2023.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Amphiphilic polymers are increasingly applied in the detergent-free isolation and functional studies of membrane proteins. However, the carboxylate group present in the structure of many popular variants, such as styrene-maleic acid (SMA) copolymers, brings limitations in terms of polymer sensitivity to precipitation at acidic pH or in the presence of divalent metal cations. Herein, we addressed this problem by replacing carboxylate with the more acidic sulfonate groups. To this end, we synthesized a library of amphiphilic poly[styrene-co-(sodium 4-styrene sulfonate)] copolymers (termed SSS), differing in their molecular weight and overall polarity. Using model cell membranes (Jurkat), we identified two copolymer compositions (SSS-L30 and SSS-L36) that solubilized membranes to an extent similar to SMA. Interestingly, the density gradient ultracentrifugation/SDS-PAGE/Western blotting analysis of cell lysates revealed a distribution of studied membrane proteins in the gradient fractions that was different than for SMA-solubilized membranes. Importantly, unlike SMA, the SSS copolymers remained soluble at low pH and in the presence of Mg2+ ions. Additionally, the solubilization of DMPC liposomes by the lead materials was studied by turbidimetry, DLS, SEC, and high-resolution NMR, revealing, for SSS-L36, the formation of stable particles (nanodiscs), facilitated by the direct hydrophobic interaction of the copolymer phenyls with lipid acyl chains.
Collapse
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Sachin Gupta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
27
|
Goncharuk MV, Vasileva EV, Ananiev EA, Gorokhovatsky AY, Bocharov EV, Mineev KS, Goncharuk SA. Facade-Based Bicelles as a New Tool for Production of Active Membrane Proteins in a Cell-Free System. Int J Mol Sci 2023; 24:14864. [PMID: 37834312 PMCID: PMC10573531 DOI: 10.3390/ijms241914864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few known membrane mimetics that can be used to synthesize active membrane proteins in high amounts. Here, we present the application of commercially available "Facade" detergents for the production of active rhodopsin. We show that the yield of active protein in lipid bicelles containing Facade-EM, Facade-TEM, and Facade-EPC is several times higher than in the case of conventional bicelles with CHAPS and DHPC and is comparable to the yield in the presence of lipid-protein nanodiscs. Moreover, the effects of the lipid-to-detergent ratio, concentration of detergent in the feeding mixture, and lipid composition of the bicelles on the total, soluble, and active protein yields are discussed. We show that Facade-based bicelles represent a prospective membrane mimetic, available for the production of membrane proteins in a cell-free system.
Collapse
Affiliation(s)
- Marina V. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Ekaterina V. Vasileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Egor A. Ananiev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Andrey Y. Gorokhovatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Eduard V. Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Sergey A. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
28
|
Majumder A, Vuksanovic N, Ray LC, Bernstein HM, Allen KN, Imperiali B, Straub JE. Synergistic computational and experimental studies of a phosphoglycosyl transferase membrane/ligand ensemble. J Biol Chem 2023; 299:105194. [PMID: 37633332 PMCID: PMC10519829 DOI: 10.1016/j.jbc.2023.105194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Complex glycans serve essential functions in all living systems. Many of these intricate and byzantine biomolecules are assembled employing biosynthetic pathways wherein the constituent enzymes are membrane-associated. A signature feature of the stepwise assembly processes is the essentiality of unusual linear long-chain polyprenol phosphate-linked substrates of specific isoprene unit geometry, such as undecaprenol phosphate (UndP) in bacteria. How these enzymes and substrates interact within a lipid bilayer needs further investigation. Here, we focus on a small enzyme, PglC from Campylobacter, structurally characterized for the first time in 2018 as a detergent-solubilized construct. PglC is a monotopic phosphoglycosyl transferase that embodies the functional core structure of the entire enzyme superfamily and catalyzes the first membrane-committed step in a glycoprotein assembly pathway. The size of the enzyme is significant as it enables high-level computation and relatively facile, for a membrane protein, experimental analysis. Our ensemble computational and experimental results provided a high-level view of the membrane-embedded PglC/UndP complex. The findings suggested that it is advantageous for the polyprenol phosphate to adopt a conformation in the same leaflet where the monotopic membrane protein resides as opposed to additionally disrupting the opposing leaflet of the bilayer. Further, the analysis showed that electrostatic steering acts as a major driving force contributing to the recognition and binding of both UndP and the soluble nucleotide sugar substrate. Iterative computational and experimental mutagenesis support a specific interaction of UndP with phosphoglycosyl transferase cationic residues and suggest a role for critical conformational transitions in substrate binding and specificity.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | | | - Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hannah M Bernstein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts, USA; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Townsend JA, Marty MT. What's the defect? Using mass defects to study oligomerization of membrane proteins and peptides in nanodiscs with native mass spectrometry. Methods 2023; 218:1-13. [PMID: 37482149 PMCID: PMC10529358 DOI: 10.1016/j.ymeth.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Many membrane proteins form functional complexes that are either homo- or hetero-oligomeric. However, it is challenging to characterize membrane protein oligomerization in intact lipid bilayers, especially for polydisperse mixtures. Native mass spectrometry of membrane proteins and peptides inserted in lipid nanodiscs provides a unique method to study the oligomeric state distribution and lipid preferences of oligomeric assemblies. To interpret these complex spectra, we developed novel data analysis methods using macromolecular mass defect analysis. Here, we provide an overview of how mass defect analysis can be used to study oligomerization in nanodiscs, discuss potential limitations in interpretation, and explore strategies to resolve these ambiguities. Finally, we review recent work applying this technique to studying formation of antimicrobial peptide, amyloid protein, and viroporin complexes with lipid membranes.
Collapse
Affiliation(s)
- Julia A Townsend
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
30
|
Vénien-Bryan C, Fernandes CAH. Overview of Membrane Protein Sample Preparation for Single-Particle Cryo-Electron Microscopy Analysis. Int J Mol Sci 2023; 24:14785. [PMID: 37834233 PMCID: PMC10573263 DOI: 10.3390/ijms241914785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM SPA) has recently emerged as an exceptionally well-suited technique for determining the structure of membrane proteins (MPs). Indeed, in recent years, huge increase in the number of MPs solved via cryo-EM SPA at a resolution better than 3.0 Å in the Protein Data Bank (PDB) has been observed. However, sample preparation remains a significant challenge in the field. Here, we evaluated the MPs solved using cryo-EM SPA deposited in the PDB in the last two years at a resolution below 3.0 Å. The most critical parameters for sample preparation are as follows: (i) the surfactant used for protein extraction from the membrane, (ii) the surfactant, amphiphiles, nanodiscs or other molecules present in the vitrification step, (iii) the vitrification method employed, and (iv) the type of grids used. The aim is not to provide a definitive answer on the optimal sample conditions for cryo-EM SPA of MPs but rather assess the current trends in the MP structural biology community towards obtaining high-resolution cryo-EM structures.
Collapse
Affiliation(s)
| | - Carlos A. H. Fernandes
- Unité Mixte de Recherche (UMR) 7590, Centre National de la Recherche Scientifique (CNRS), Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement (IRD), Institut de Minéralogie, Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
31
|
Juliano BR, Keating JW, Ruotolo BT. Infrared Photoactivation Enables Improved Native Top-Down Mass Spectrometry of Transmembrane Proteins. Anal Chem 2023; 95:13361-13367. [PMID: 37610409 PMCID: PMC11081007 DOI: 10.1021/acs.analchem.3c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Membrane proteins are often challenging targets for native top-down mass spectrometry experimentation. The requisite use of membrane mimetics to solubilize such proteins necessitates the application of supplementary activation methods to liberate protein ions prior to sequencing, which typically limits the sequence coverage achieved. Recently, infrared photoactivation has emerged as an alternative to collisional activation for the liberation of membrane proteins from surfactant micelles. However, much remains unknown regarding the mechanism by which IR activation liberates membrane protein ions from such micelles, the extent to which such methods can improve membrane protein sequence coverage, and the degree to which such approaches can be extended to support native proteomics. Here, we describe experiments designed to evaluate and probe infrared photoactivation for membrane protein sequencing, proteoform identification, and native proteomics applications. Our data reveal that infrared photoactivation can dissociate micelles composed of a variety of detergent classes, without the need for a strong IR chromophore by leveraging the relatively weak association energies of such detergent clusters in the gas phase. Additionally, our data illustrate how IR photoactivation can be extended to include membrane mimetics beyond micelles and liberate proteins from nanodiscs, liposomes, and bicelles. Finally, our data quantify the improvements in membrane protein sequence coverage produced through the use of IR photoactivation, which typically leads to membrane protein sequence coverage values ranging from 40 to 60%.
Collapse
Affiliation(s)
- Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph W Keating
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Morizumi T, Kim K, Li H, Govorunova EG, Sineshchekov OA, Wang Y, Zheng L, Bertalan É, Bondar AN, Askari A, Brown LS, Spudich JL, Ernst OP. Structures of channelrhodopsin paralogs in peptidiscs explain their contrasting K + and Na + selectivities. Nat Commun 2023; 14:4365. [PMID: 37474513 PMCID: PMC10359266 DOI: 10.1038/s41467-023-40041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ selectivity is determined at two distinct sites on the putative ion conduction pathway: in a patch of critical residues in the intracellular segment (Leu69/Phe69, Ile73/Ser73 and Asp116) and within a cluster of aromatic residues in the extracellular segment (primarily, Trp102 and Tyr222). The two filters are on the opposite sides of the photoactive site involved in channel gating.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hai Li
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Elena G Govorunova
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Oleg A Sineshchekov
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yumei Wang
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Lei Zheng
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Éva Bertalan
- Physikzentrum, RWTH-Aachen University, Aachen, Germany
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Măgurele, Romania
- Institute of Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Azam Askari
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - John L Spudich
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
34
|
Kyaw A, Roepke K, Arthur T, Howard KP. Conformation of influenza AM2 membrane protein in nanodiscs and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184152. [PMID: 36948480 PMCID: PMC10175228 DOI: 10.1016/j.bbamem.2023.184152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The influenza A M2 protein (AM2) is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle including viral assembly and budding. An atomic-level conformational understanding of this key player in the influenza life cycle could inform new antiviral strategies. For conformational studies of complex systems like the AM2 membrane protein, a multipronged approach using different biophysical methods and different model membranes is a powerful way to incorporate complementary data and achieve a fuller, more robust understanding of the system. However, one must be aware of how the sample composition required for a particular method impacts the data collected and how conclusions are drawn. In that spirit, we systematically compared the properties of AM2 in two different model membranes: nanodiscs and liposomes. Electron paramagnetic spectroscopy of spin-labeled AM2 showed that the conformation and dynamics were strikingly similar in both AM2-nanodiscs and AM2-liposomes consistent with similar conformations in both model membranes. Analysis of spin labeled lipids embedded in both model membranes revealed that the bilayer in AM2-liposomes was more fluid and permeable to oxygen than AM2-nanodiscs with the same lipid composition. Once the difference in the partitioning of the paramagnetic oxygen relaxation agent was taken into account, the membrane topology of AM2 appeared to be the same in both liposomes and nanodiscs. Finally, functionally relevant AM2 conformational shifts previously seen in liposomes due to the addition of cholesterol were also observed in nanodiscs.
Collapse
Affiliation(s)
- Aye Kyaw
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kyra Roepke
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Tyrique Arthur
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kathleen P Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America.
| |
Collapse
|
35
|
Rouchidane Eyitayo A, Boudier-Lemosquet A, Chaignepain S, Priault M, Manon S. Bcl-xL Is Spontaneously Inserted into Preassembled Nanodiscs and Stimulates Bax Insertion in a Cell-Free Protein Synthesis System. Biomolecules 2023; 13:876. [PMID: 37371456 DOI: 10.3390/biom13060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The antiapoptotic protein Bcl-xL is a major regulator of cell death and survival, but many aspects of its functions remain elusive. It is mostly localized in the mitochondrial outer membrane (MOM) owing to its C-terminal hydrophobic α-helix. In order to gain further information about its membrane organization, we set up a model system combining cell-free protein synthesis and nanodisc insertion. We found that, contrary to its proapoptotic partner Bax, neosynthesized Bcl-xL was spontaneously inserted into nanodiscs. The deletion of the C-terminal α-helix of Bcl-xL prevented nanodisc insertion. We also found that nanodisc insertion protected Bcl-xL against the proteolysis of the 13 C-terminal residues that occurs during expression of Bcl-xL as a soluble protein in E. coli. Interestingly, we observed that Bcl-xL increased the insertion of Bax into nanodiscs, in a similar way to that which occurs in mitochondria. Cell-free synthesis in the presence of nanodiscs is, thus, a suitable model system to study the molecular aspects of the interaction between Bcl-xL and Bax during their membrane insertion.
Collapse
Affiliation(s)
- Akandé Rouchidane Eyitayo
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Axel Boudier-Lemosquet
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Stéphane Chaignepain
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
- Centre de Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, 33077 Bordeaux, France
| | - Muriel Priault
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| |
Collapse
|
36
|
Krishnarjuna B, Marte J, Ravula T, Ramamoorthy A. Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions. J Colloid Interface Sci 2023; 634:887-896. [PMID: 36566634 PMCID: PMC10838601 DOI: 10.1016/j.jcis.2022.12.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nanodisc technology is increasingly used for structural studies on membrane proteins and drug delivery. The development of synthetic polymer nanodiscs and the recent discovery of non-ionic inulin-based polymers have significantly broadened the scope of nanodiscs. While the lipid exchange and size flexibility properties of the self-assembled polymer-based nanodiscs are valuable for various applications, the non-ionic polymer nanodiscs are remarkably unique in that they enable the reconstitution of any protein, protein-protein complexes, or drugs irrespective of their charge. However, the non-ionic nature of the belt could influence the stability and size homogeneity of inulin-based polymer nanodiscs. In this study, we investigate the size stability and homogeneity of nanodiscs formed by non-ionic lipid-solubilizing polymers using different biophysical methods. Polymer nanodiscs containing zwitterionic DMPC and different ratios of DMPC:DMPG lipids were made using anionic SMA-EA or non-ionic pentyl-inulin polymers. Non-ionic polymer nanodiscs made using zwitterionic DMPC lipids produced a very broad elution profile on SEC due to their instability in the column, thus affecting sample monodispersity which was confirmed by DLS experiments that showed multiple peaks. However, the inclusion of anionic DMPG lipids improved the stability as observed from SEC and DLS profiles, which was further confirmed by TEM images. Whereas, anionic SMA-EA-based DMPC-nanodiscs showed excellent stability and size homogeneity when solubilizing zwitterionic lipids. The stability of DMPC:DMPG non-ionic polymer nanodiscs is attributed to the inter-nanodisc repulsion by the anionic-DMPG that prevents the uncontrolled collision and fusion of nanodiscs. Thus, the reported results demonstrate the use of electrostatic interactions to tune the solubility, stability, and size homogeneity of non-ionic polymer nanodiscs which are important features for enabling functional and atomic-resolution structural studies of membrane proteins, other lipid-binding molecules, and water-soluble biomolecules including cytosolic proteins, nucleic acids and metabolites.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
37
|
Hydrogen/deuterium exchange-mass spectrometry of integral membrane proteins in native-like environments: current scenario and the way forward. Essays Biochem 2023; 67:187-200. [PMID: 36876893 PMCID: PMC10070480 DOI: 10.1042/ebc20220173] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 03/07/2023]
Abstract
Integral membrane proteins (IMPs) perform a range of diverse functions and their dysfunction underlies numerous pathological conditions. Consequently, IMPs constitute most drug targets, and the elucidation of their mechanism of action has become an intense field of research. Historically, IMP studies have relied on their extraction from membranes using detergents, which have the potential to perturbate their structure and dynamics. To circumnavigate this issue, an array of membrane mimetics has been developed that aim to reconstitute IMPs into native-like lipid environments that more accurately represent the biological membrane. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a versatile tool for probing protein dynamics in solution. The continued development of HDX-MS methodology has allowed practitioners to investigate IMPs using increasingly native-like membrane mimetics, and even pushing the study of IMPs into the in vivo cellular environment. Consequently, HDX-MS has come of age and is playing an ever-increasingly important role in the IMP structural biologist toolkit. In the present mini-review, we discuss the evolution of membrane mimetics in the HDX-MS context, focusing on seminal publications and recent innovations that have led to this point. We also discuss state-of-the-art methodological and instrumental advancements that are likely to play a significant role in the generation of high-quality HDX-MS data of IMPs in the future.
Collapse
|
38
|
Jia X, Chin YKY, Zhang AH, Crawford T, Zhu Y, Fletcher NL, Zhou Z, Hamilton BR, Stroet M, Thurecht KJ, Mobli M. Self-cyclisation as a general and efficient platform for peptide and protein macrocyclisation. Commun Chem 2023; 6:48. [PMID: 36871076 PMCID: PMC9985607 DOI: 10.1038/s42004-023-00841-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Macrocyclisation of proteins and peptides results in a remarkable increase in structural stability, making cyclic peptides and proteins of great interest in drug discovery-either directly as drug leads or as in the case of cyclised nanodiscs (cNDs), as tools for studies of trans-membrane receptors and membrane-active peptides. Various biological methods have been developed that are capable of yielding head-to-tail macrocyclised products. Recent advances in enzyme-catalysed macrocyclisation include discovery of new enzymes or design of new engineered enzymes. Here, we describe the engineering of a self-cyclising "autocyclase" protein, capable of performing a controllable unimolecular reaction for generation of cyclic biomolecules in high yield. We characterise the self-cyclisation reaction mechanism, and demonstrate how the unimolecular reaction path provides alternative avenues for addressing existing challenges in enzymatic cyclisation. We use the method to produce several notable cyclic peptides and proteins, demonstrating how autocyclases offer a simple, alternative way to access a vast diversity of macrocyclic biomolecules.
Collapse
Affiliation(s)
- Xinying Jia
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Yanni K-Y Chin
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alan H Zhang
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Theo Crawford
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yifei Zhu
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zihan Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Martin Stroet
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
39
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
40
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
41
|
Xu D, Chen X, Li Y, Chen Z, Xu W, Wang X, Lv Y, Wang Z, Wu M, Liu G, Wang J. Reconfigurable Peptide Analogs of Apolipoprotein A-I Reveal Tunable Features of Nanodisc Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1262-1276. [PMID: 36626237 DOI: 10.1021/acs.langmuir.2c03082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodisc (ND)-forming membrane scaffold proteins or peptides developed from apolipoprotein A-I (apoA-I) have led to considerable promise in structural biology and therapeutic applications. However, the rationale and regularity characteristics in peptide sequence design remain inconclusive. Here, we proposed a consensus-based normalization approach through the reversed engineering of apoA-IΔ1-45 to design reconfigurable apoA-I peptide analogs (APAs) for tunable ND assembly. We present extensive morphological validations and computational simulation analyses on divergent APA-NDs that are generated by our method. Fifteen divergent APAs were generated accordingly to study the assembly machinery of NDs. We show that APA designs exhibit multifactorial influence in terms of varying APA tandem repeats, sequence composition, and lipid-to-APA ratio to form tunable diameters of NDs. There is a strong positive correlation between DMPC-to-APA ratios and ND diameters. Longer APA with more tandem repeats tends to yield higher particle size homogeneity. Our results also suggest proline is a dispensable residue for the APA-ND formation. Interestingly, proline-rich substitution not only provides an inward-bending effect in forming smaller NDs but also induces the cumulative chain flexibility that enables larger ND formation at higher lipid ratios. Additionally, proline-tryptophan residues in APAs play a dominant role in forming larger NDs. Molecular simulation shows that enriched basic and acidic residues in APAs evoke abundant hydrogen-bond and salt bridge networks to reinforce the structural stability of APA-NDs. Together, our findings provide a rational basis for understanding APA design. The proposed model could be extended to other apolipoproteins for desired ND engineering.
Collapse
Affiliation(s)
- Daiyun Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yonghui Lv
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen518033, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen361102, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| |
Collapse
|
42
|
The Advanced Properties of Circularized MSP Nanodiscs Facilitate High-resolution NMR Studies of Membrane Proteins. J Mol Biol 2022; 434:167861. [PMID: 36273602 DOI: 10.1016/j.jmb.2022.167861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Membrane mimetics are essential for structural and functional studies of membrane proteins. A promising lipid-based system are phospholipid nanodiscs, where two copies of a so-called membrane scaffold protein (MSP) wrap around a patch of lipid bilayer. Consequently, the size of a nanodisc is determined by the length of the MSP. Furthermore, covalent MSP circularization was reported to improve nanodisc stability. However, a more detailed comparative analysis of the biophysical properties of circularized and linear MSP nanodiscs for their use in high-resolution NMR has not been conducted so far. Here, we analyze the membrane fluidity and temperature-dependent size variability of circularized and linear nanodiscs using a large set of analytical methods. We show that MSP circularization does not alter the membrane fluidity in nanodiscs. Further, we show that the phase transition temperature increases for circularized versions, while the cooperativity decreases. We demonstrate that circularized nanodiscs keep a constant size over a large temperature range, in contrast to their linear MSP counterparts. Due to this size stability, circularized nanodiscs are beneficial for high-resolution NMR studies of membrane proteins at elevated temperatures. Despite their slightly larger size as compared to linear nanodiscs, 3D NMR experiments of the voltage-dependent anion channel 1 (VDAC1) in circularized nanodiscs have a markedly improved spectral quality in comparison to VDAC1 incorporated into linear nanodiscs of a similar size. This study provides evidence that circularized MSP nanodiscs are a promising tool to facilitate high-resolution NMR studies of larger and challenging membrane proteins in a native lipid environment.
Collapse
|
43
|
Ho PS, Kao TY, Li CC, Lan YJ, Lai YC, Chiang YW. Nanodisc Lipids Exhibit Singular Behaviors Implying Critical Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15372-15383. [PMID: 36454955 DOI: 10.1021/acs.langmuir.2c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodiscs are broadly used for characterization of membrane proteins as they are generally assumed to provide a near-native environment. In fact, it is an open question whether the physical properties of lipids in nanodiscs and membrane vesicles of the same lipid composition are identical. Here, we investigate the properties of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and their mixtures) in two different sample types, nanodiscs and multilamellar vesicles, by means of spin-label electron spin resonance techniques. Our results provide a quantitative description of lipid dynamics and ordering, elucidating the molecular details of how lipids in the two sample types behave differently in response to temperature and lipid composition. We show that the properties of lipids are altered in nanodiscs such that the dissimilarity of the fluid and gel lipid phases is reduced, and the first-order phase transitions are largely abolished in nanodiscs. We unveil that the ensemble of lipids in the middle of a nanodisc bilayer, as probed by the end-chain spin-label 16-PC, is promoted to a state close to a miscibility critical point, thereby rendering the phase transitions continuous. Critical phenomena have recently been proposed to explain features of the heterogeneity in native cell membranes. Our results lay the groundwork for how to establish a near-native environment in nanodiscs with simple organization of lipid components.
Collapse
Affiliation(s)
- Pei-Shan Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402-002, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
44
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
45
|
Krishnarjuna B, Im SC, Ravula T, Marte J, Auchus RJ, Ramamoorthy A. Non-Ionic Inulin-Based Polymer Nanodiscs Enable Functional Reconstitution of a Redox Complex Composed of Oppositely Charged CYP450 and CPR in a Lipid Bilayer Membrane. Anal Chem 2022; 94:11908-11915. [PMID: 35977417 PMCID: PMC10851674 DOI: 10.1021/acs.analchem.2c02489] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although polymer-based lipid nanodiscs are increasingly used in the structural studies of membrane proteins, the charge of the belt-forming polymer is a major limitation for functional reconstitution of membrane proteins possessing an opposite net charge to that of the polymer. This limitation also rules out the reconstitution of a protein-protein complex composed of oppositely charged membrane proteins. In this study, we report the first successful functional reconstitution of a membrane-bound redox complex constituting a cationic cytochrome P450 (CYP450) and an anionic cytochrome P450 reductase (CPR) in non-ionic inulin-based lipid nanodiscs. The gel-to-liquid-crystalline phase-transition temperature (Tm) of DMPC:DMPG (7:3 w/w) lipids in polymer nanodiscs was determined by differential scanning calorimetry (DSC) and 31P NMR experiments. The CYP450-CPR redox complex reconstitution in polymer nanodiscs was characterized by size-exclusion chromatography (SEC), and the electron transfer kinetics was carried out using the stopped-flow technique under anaerobic conditions. The Tm of DMPC:DMPG (7:3 w/w) in polymer nanodiscs measured from 31P NMR agrees with that obtained from DSC and was found to be higher than that for liposomes due to the decreased cooperativity of lipids present in the nanodiscs. The stopped-flow measurements revealed the CYP450-CPR redox complex reconstituted in nanodiscs to be functional, and the electron transfer kinetics was found to be temperature-dependent. Based on the successful demonstration of the use of non-ionic inulin-based polymer nanodiscs reported in this study, we expect them to be useful in studying the function and structures of a variety of membrane proteins/complexes irrespective of the charge of the molecular components. Since the polymer nanodiscs were shown to align in an externally applied magnetic field, they can also be used to measure residual dipolar couplings (RDCs) and residual quadrupolar couplings (RQCs) for various molecules ranging from small molecules to soluble proteins and nucleic acids.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sang-Choul Im
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Richard J. Auchus
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
46
|
Janata M, Čadová E, Angelisová P, Charnavets T, Hořejší V, Raus V. Tailoring Butyl Methacrylate/Methacrylic Acid Copolymers for the Solubilization of Membrane Proteins: The Influence of Composition and Molecular Weight. Macromol Biosci 2022; 22:e2200284. [PMID: 35964154 DOI: 10.1002/mabi.202200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Low-molecular weight (MW) amphiphilic copolymers have been recently introduced as a powerful tool for the detergent-free isolation of cell membrane proteins. Herein, we use a screening approach to identify a new copolymer type for this application. Via a two-step ATRP/acidolysis procedure, we prepare a 3×3 matrix of well-defined poly[(butyl methacrylate)-co-(methacrylic acid)] copolymers (denoted BMAA) differing in their MW and ratio of hydrophobic (BMA) and hydrophilic (MAA) units. Subsequently, using the biologically relevant model (T-cell line Jurkat), we identify two compositions of BMAA copolymers that solubilize cell membranes to an extent comparable to the industry standard, styrene-maleic acid copolymer (SMA), while avoiding the potentially problematic phenyl groups. Surprisingly, while only the lowest-MW variant of the BMA/MAA 2:1 composition is effective, all the copolymers of the BMA/MAA 1:1 composition are found to solubilize the model membranes, including the high-MW variant (MW of 14 000). Importantly, the density gradient ultracentrifugation/SDS PAGE/Western blotting experiments reveal that the BMA/MAA 1:1 copolymers disintegrate the Jurkat membranes differently than SMA, as demonstrated by the different distribution patterns of two tested membrane protein markers. This makes the BMAA copolymers a useful tool for studies on membrane microdomains differing in their composition and resistance to membrane-disintegrating polymers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Tatsiana Charnavets
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic.,T. Charnavets, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, CZ-25242, Czech Republic
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| |
Collapse
|
47
|
Krishnarjuna B, Ramamoorthy A. Detergent-Free Isolation of Membrane Proteins and Strategies to Study Them in a Near-Native Membrane Environment. Biomolecules 2022; 12:1076. [PMID: 36008970 PMCID: PMC9406181 DOI: 10.3390/biom12081076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Atomic-resolution structural studies of membrane-associated proteins and peptides in a membrane environment are important to fully understand their biological function and the roles played by them in the pathology of many diseases. However, the complexity of the cell membrane has severely limited the application of commonly used biophysical and biochemical techniques. Recent advancements in NMR spectroscopy and cryoEM approaches and the development of novel membrane mimetics have overcome some of the major challenges in this area. For example, the development of a variety of lipid-nanodiscs has enabled stable reconstitution and structural and functional studies of membrane proteins. In particular, the ability of synthetic amphipathic polymers to isolate membrane proteins directly from the cell membrane, along with the associated membrane components such as lipids, without the use of a detergent, has opened new avenues to study the structure and function of membrane proteins using a variety of biophysical and biological approaches. This review article is focused on covering the various polymers and approaches developed and their applications for the functional reconstitution and structural investigation of membrane proteins. The unique advantages and limitations of the use of synthetic polymers are also discussed.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
48
|
Moon S, Chung J, Kim Y, Hong C, Kim S, Hwang J, Jung Y, Chung WJ, Kweon DH. Bifunctional hetero di-disc for broad-spectrum influenza neutralization. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102587. [PMID: 35863620 DOI: 10.1016/j.nano.2022.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Nanodiscs containing sialic acid, which binds the hemagglutinin of the influenza virus, rupture the viral envelope and entrap viral ribonucleoproteins in the endolysosome. While nanodiscs are potent antiviral platforms, ganglioside GD1a containing α2,3-sialic acid does not cover all virus strains. When two nanodiscs containing different receptors 6'-sialyllactose and GD1a were mixed, one nanodisc inhibited the function of the other. A nanodisc loaded with two different receptors exhibited a biased activity toward only one receptor precluding the generation of a multifunctional nanodisc. Here, we suggest hetero di-disc, in which two nanodiscs loaded with each receptor were conjugated through protein trans-splicing for a broad-spectrum antiviral. The hetero di-disc showed strong antiviral activity in vitro and in vivo. Our results suggested that hetero di-discs not only expanded the inhibitory spectrum of nanodiscs but also enabled nanodisc-based delivery of multiple ligands without interference.
Collapse
Affiliation(s)
- Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinhyo Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yuna Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Celab Hong
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
49
|
Bruni R. High-Throughput Cell-Free Screening of Eukaryotic Membrane Proteins in Lipidic Mimetics. Curr Protoc 2022; 2:e510. [PMID: 35926131 DOI: 10.1002/cpz1.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane proteins (MPs) carry out important functions in the metabolism of cells, such as the detection of extracellular activities and the transport of small molecules across the plasma and organelle membranes. Expression of MPs for biochemical, biophysical, and structural analysis is in most cases achieved by overexpression of the desired target in an appropriate host, such as a bacterium. However, overexpression of MPs is usually toxic to the host cells and can lead to aggregation of target protein and to resistance to detergent extraction. An alternative to cell-based MP expression is cell-free (CF), or in vitro, expression. CF expression of MPs has several advantages over cell-based methods, including lack of toxicity issues, no requirement for detergent extraction, and direct incorporation of target proteins in various lipidic mimetics. This article describes a high-throughput method for the expression and purification of eukaryotic membrane proteins used in the author's lab. Basic Protocol 1 describes the selection and cloning of target genes into appropriate vectors for CF expression. Basic Protocol 2 describes the assembly of CF reactions for high-throughput screening. Basic Protocol 3 outlines methods for purification and detection of target proteins. Support Protocols 1-6 describe various accessory procedures: amplification of target, treatment of vectors to prepare them for ligation-independent cloning, and the preparation of S30 extract, T7 RNA polymerase, liposomes, and nanodiscs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Target selection, construct design, and cloning into pET-based expression vectors Support Protocol 1: Amplification of target DNA Support Protocol 2: Preparation of ligation-independent cloning (LIC)-compatible vectors Basic Protocol 2: Assembly of small-scale cell-free reactions for high-throughput screening Support Protocol 3: Preparation of Escherichia coli S30 extract Support Protocol 4: Preparation of T7 RNA polymerase Support Protocol 5: Preparation of liposomes Support Protocol 6: Preparation of nanodiscs Basic Protocol 3: Purification and detection of cell-free reaction products.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center, New York, New York
| |
Collapse
|
50
|
Zhang Y, Ma L, Bao H. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Crit Rev Biochem Mol Biol 2022; 57:443-460. [PMID: 36151854 PMCID: PMC9588726 DOI: 10.1080/10409238.2022.2121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA;,Conatct: and
| | - Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Present address: Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Bao
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458,Conatct: and
| |
Collapse
|